On the validation of the LS-DYNA Geo Metro numerical model - Publication - Bridge of Knowledge

Search

On the validation of the LS-DYNA Geo Metro numerical model

Abstract

The paper presents experiences gained during work with numerical model of Geo Metro vehicle used for simulations of crash tests with road safety barriers. Attention is drawn to the subject of tire/wheel breakage during collision events. Some methods for improvement of the model are presented in the paper. Several results for the normative vehicle numerical tests are introduced. Simulations were carried out using LS-DYNA finite element code with solver version R8.1

Citations

  • 6

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 256 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MATEC Web of Conferences no. 262, pages 1 - 6,
ISSN: 2261-236X
Language:
English
Publication year:
2019
Bibliographic description:
Bruski D., Burzyński S., Chróścielewski J., Pachocki Ł., Witkowski W.: On the validation of the LS-DYNA Geo Metro numerical model// MATEC Web of Conferences -Vol. 262, (2019), s.1-6
DOI:
Digital Object Identifier (open in new tab) 10.1051/matecconf/201926210001
Bibliography: test
  1. European Standard EN 1317-1-5, (2010) open in new tab
  2. British Standard PD CEN/TR 16303-1-5, (2012) open in new tab
  3. J.O. Halquist, LS-DYNA Theory Manual, USA, 2006
  4. Livermore Software Technology Corporation, LS-DYNA Keyword User's Manual, USA, (2015) open in new tab
  5. National Crash Analysis Center, Crash Simulation Vehicle Models (accessed 10.03.2016) open in new tab
  6. ROBUST PROJECT, https://www.vegvesen.no/s/robust/Computational _mechanics/Vehicle%20models/
  7. ROBUST PROJECT, WP5-Computational Mechanics Geo-Metro Finite Element model (GM_R3): Improvements of Steering System and Suspensions, I, (2005) open in new tab
  8. T. Teng, C. Liang, T. Tran, Simulation, 92(6), 565- 578, (2016) open in new tab
  9. K. Jamroz, S. Burzyński, W. Witkowski, K. Wilde, Advences in Mechanics: Theoretical, Computational and Interdisciplinary Issues, p.231- 234, (2016) open in new tab
  10. W. Borkowski, Z. Hryciów, P. Rybak, J. Wysocki, JKONESPaT, 17, 65-71, (2010) open in new tab
  11. M. Brovinsek, M. Vesenjak, M. Ulbin, Z. Ren, EFA, 14, 1711-1718, (2007) open in new tab
  12. K. Wilde, K. Jamroz, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, JCEEA, XXXIII, 455-467, (2016) open in new tab
  13. M. Klasztorny, D. Nycz, P. Szurgott, IJoC, 21:6, 644-659, (2016) open in new tab
  14. K. Wilde, D. Bruski, S. Burzyński, J. Chróścielewski, W. Witkowski, DSTA, 555-566, (2017) open in new tab
  15. M. Klasztorny, K. Zielonka, D. Nycz, P. Posuniak, R. Romanowski, ACME, 18, 339-355, (2018) open in new tab
  16. K. Wilde, K. Jamroz, D. Bruski, M. Budzyński, S. Burzyński, J. Chróścielewski, W. Witkowski, ACME, 63, 187-199, (2017) open in new tab
  17. P. Baranowski, J. Małachowski, J. Janiszewski, J. Weekezer, Materials and Design, 96, 68-79, (2016) open in new tab
  18. P. Baranowski, J. Małachowski, L. Mazurkiewicz, IJoMS, 106, 346-356, (2016) open in new tab
  19. P. Baranowski, J. Janiszewski, J. Małachowski, JoTaAM, 55, 727-739, (2017) open in new tab
  20. P. Baranowski, J. Małachowski, Bulletin of the Polish Academy of Sciences, 63, 867-878, (2015) open in new tab
  21. F. Orengo, M. H. Ray, C. A. Plaxico, ASME, (2003) open in new tab
  22. J. D. Reid, D. A. Boesch, R. W. Bielenberg, ICrash, (2006)
  23. Y. Cai, M. Zang, Y. Chen, W. Liu, JoAE, 228(9), 1116-1124, (2014) open in new tab
  24. National Highway Traffic Safety Administration, Crash Simulation Vehicle Models (accessed 26.02.18) open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 156 times

Recommended for you

Meta Tags