Abstract
W referacie zaprezentowane zostaną wyniki badań nad rozpoznawaniem obiektów w różnych warunkach za pomocą głębokich sieci neuronowych. Przeanalizowano działanie dwóch struktur – ResNet50 oraz VGG19. Systemy rozpoznawania obrazu wytrenowano oraz przetestowano na reprezentatywnej, bazie zawierającej 25 tys. zdjęć psów oraz kotów, która znacznie upraszcza analizowanie działania systemów ze względu na łatwość interpretacji zdjęć przez człowieka. Zbadano wpływ pojawienia się nietypowych zdjęć na wynik klasyfikacji. Ponadto przeanalizowano zdjęcia niepoprawnie sklasyfikowane i porównano je z interpretacjami człowieka. Uzyskano bardzo wysokie wyniki klasyfikacji. Do oceny systemów użyto miar statystycznych takich jak: dokładność, czułość, swoistość, krzywe ROC
Citations
-
0
CrossRef
-
0
Web of Science
-
0
Scopus
Authors (2)
Cite as
Full text
- Publication version
- Accepted or Published Version
- DOI:
- Digital Object Identifier (open in new tab) 10.32016/1.60.12
- License
- open in new tab
Keywords
Details
- Category:
- Articles
- Type:
- artykuły w czasopismach recenzowanych i innych wydawnictwach ciągłych
- Published in:
-
Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej
pages 63 - 66,
ISSN: 1425-5766 - Language:
- Polish
- Publication year:
- 2018
- Bibliographic description:
- Kwasigroch A., Grochowski M.: Rozpoznawanie obiektów przez głębokie sieci neuronowe// Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej. -., nr. 60 (2018), s.63-66
- DOI:
- Digital Object Identifier (open in new tab) 10.32016/1.60.12
- Verified by:
- Gdańsk University of Technology
seen 402 times