Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream - Publication - Bridge of Knowledge

Search

Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream

Abstract

Concentrations of seven heavy metals (HMs): Zn, Cu, Pb, Cd, Ni, Cr, and Fe in core samples of bottom sediments from four retention tanks (RTs) located along the Strzyza Stream in northern Poland (Gdansk) were measured to obtain a general view of sediment quality. The recognition of contamination and potential environmental impacts is the main aim of this paper. A total of 96 sediment samples were collected from eight sampling sites at depths of 0–2 cm, 8–10 cm, 16–18 cm, 24–26 cm. Concentrations of Cu, Zn, Pb, Fe, Ni, and Cr were measured with AAS while Cd concentration was measured with ICP-MS. Granulometric analyses with normalized sieve apertures were carried out. Geochemical indices: enrichment factor, anthropogenic factor, and modified degree of contamination (mCd) were used to assess the contamination level. Concentrations of HMs in sediments changed in the range: Cu (3.24–119 mg/kg d.w.), Zn (12.5–584 mg/kg d.w.), Pb (4.91–309 mg/kg d.w.), Cd (0.003–0.716 mg/kg d.w.), Ni (1.57–25.8 mg/kg d.w.), Cr (2.45–74.5 mg/kg d.w.), and Fe (3993–63817 mg/kg d.w.). The sequential extraction verified the bonding of HMs with non-mobile fractions. Geochemical indices showed widespread pollution by Cu, Pb, Cd, and Zn. Cluster and factor analysis distinguished three related subgroups of HMs: Pb, Ni–Cr, and Fe–Cd–Cu–Zn, suggesting possible common source of each subgroup. Strongly contaminated sediments were distinguished in sediment cores in two middle stream RTs characterized by intense urbanization in their direct catchments.

Citations

  • 2 2

    CrossRef

  • 0

    Web of Science

  • 2 6

    Scopus

Cite as

Full text

download paper
downloaded 53 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
ENVIRONMENTAL GEOCHEMISTRY AND HEALTH no. 42, pages 1469 - 1485,
ISSN: 0269-4042
Language:
English
Publication year:
2020
Bibliographic description:
Nawrot N., Wojciechowska E., Matej-Łukowicz K., Walkusz-Miotk J., Pazdro K.: Spatial and vertical distribution analysis of heavy metals in urban retention tanks sediments: a case study of Strzyza Stream// ENVIRONMENTAL GEOCHEMISTRY AND HEALTH -Vol. 42, (2020), s.1469-1485
DOI:
Digital Object Identifier (open in new tab) 10.1007/s10653-019-00439-8
Bibliography: test
  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227-238. https://doi.org/10.1007/s10661-007-9678-2. open in new tab
  2. Alahabadi, A., & Malvandi, H. (2018). Contamination and ecological risk assessment of heavy metals and metalloids in surface sediments of the Tajan River, Iran. Marine Pollution Bulletin, 133, 741-749. https://doi.org/10.1016/j. marpolbul.2018.06.030. open in new tab
  3. Alexakis, D. (2011). Diagnosis of stream sediment quality and assessment of toxic element contamination sources in East Attica, Greece. Environmental Earth Sciences, 63, 1369-1383. https://doi.org/10.1007/s12665-010-0807-9. open in new tab
  4. Alexakis, D., & Gamvroula, D. (2014). Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos Basin, Attica, Greece. Applied and Environmental Soil Science, 2014, 1-8. https://doi.org/10. 1155/2014/718534. open in new tab
  5. Angrill, S., Petit-Boix, A., Morales-Pinzón, T., Josa, A., Rier- adevall, J., & Gabarrell, X. (2017). Urban rainwater runoff quantity and quality-A potential endogenous resource in cities? Journal of Environmental Management, 189, 14-21. https://doi.org/10.1016/j.jenvman.2016.12.027. open in new tab
  6. Birch, G. F., & Olmos, M. A. (2008). Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES Journal of Marine Science, 65(8), 1407-1413. open in new tab
  7. Buat-Menard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 399-411. https://doi.org/10.1016/0012- 821X(79)90049-9. open in new tab
  8. Charters, F. (2016a). Characterising and modelling urban runoff quality for improved stormwater management. University of Canterbury.
  9. Charters, F. (2016b). Stormwater contaminant load monitoring and modelling of the Addington Brook catchment. University of Canterbury.
  10. Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512-513, 143-153. https://doi.org/10.1016/j.scitotenv.2015.01.025. open in new tab
  11. Devesa-Rey, R., Díaz-Fierros, F., & Barral, M. T. (2011). Assessment of enrichment factors and grain size influence on the metal distribution in riverbed sediments (Anllóns River, NW Spain). Environmental Monitoring and Assessment, 179, 371-388. https://doi.org/10.1007/ s10661-010-1742-7. open in new tab
  12. Dias-Ferreira, C., Pato, R. L., Varejão, J. B., Tavares, A. O., & Ferreira, A. J. D. (2016). Heavy metal and PCB spatial distribution pattern in sediments within an urban catch- ment-Contribution of historical pollution sources. Jour- nal of Soils and Sediments, 16, 2594-2605. https://doi.org/ 10.1007/s11368-016-1542-y. open in new tab
  13. Du, W., Li, X., Chen, Y., & Shen, G. (2018). Household air pollution and personal exposure to air pollutants in rural China-A review. Environmental Pollution, 237, 625-638. https://doi.org/10.1016/j.envpol.2018.02.054. open in new tab
  14. Ergönül, M. B., & Altindag, A. (2014). Heavy metal concen- trations in the muscle tissues of seven commercial fish species from Sinop Coasts of the Black Sea. Rocznik Ochrona Środowiska, 16(cz. 1), 34-51. open in new tab
  15. Farkas, A., Erratico, C., & Viganò, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 68, 761-768. https://doi.org/10.1016/j.chemosphere.2006.12. 099. open in new tab
  16. Ghrefat, H. A., Abu-Rukah, Y., & Rosen, M. A. (2011). Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Kafrain Dam, Jordan. Environmental Monitoring and Assessment, 178, 95-109. https://doi.org/10.1007/s10661- 010-1675-1. open in new tab
  17. Grosbois, C., Meybeck, M., Horowitz, A., & Ficht, A. (2006). The spatial and temporal trends of Cd, Cu, Hg, Pb and Zn in Seine River floodplain deposits. Science of the Total Environment, 1994-2000(356), 22-37. https://doi.org/10. 1016/j.scitotenv.2005.01.049. open in new tab
  18. Guo, W., Wang, Y., Shi, J., Zhao, X., & Xie, Y. (2019). Sedi- ment information on natural and anthropogenic-induced change of connected water systems in Chagan Lake, North China. Environmental Geochemistry and Health. https:// doi.org/10.1007/s10653-019-00280-z. open in new tab
  19. Guo, P., Xie, Z. L., Li, J., Kang, C. L., & Liu, J. H. (2005). Relationships between fractionations of Pb, Cd, Cu, Zn and Ni and soil properties in urban soils of Changchun, China. Chinese Geographical Science. https://doi.org/10.1007/ s11769-005-0013-y. open in new tab
  20. Hakanson, L. (1980). An ecological risk index for aquatic pol- lution control-A sedimentological approach. Water Research, 14, 975-1001. https://doi.org/10.1016/0043- 1354(80)90143-8. open in new tab
  21. Håkanson, L. (1984). Aquatic contamination and ecological risk. An attempt to a conceptual framework. Water Research, 18, 1107-1118. https://doi.org/10.1016/0043- 1354(84)90225-2. open in new tab
  22. Hanif, N., Eqani, S. A. M. A. S., Ali, S. M., Cincinelli, A., Ali, N., Katsoyiannis, I. A., et al. (2016). Geo-accumulation and enrichment of trace metals in sediments and their associated risks in the Chenab River, Pakistan. Journal of Geochemical Exploration, 165, 62-70. https://doi.org/10. 1016/j.gexplo.2016.02.006. open in new tab
  23. Hansen, N. E., Vietor, D. M., Munster, C. L., White, R. H., & Provin, T. L. (2012). Runoff and nutrient losses from constructed soils amended with compost. Applied and Environmental Soil Science. https://doi.org/10.1155/2012/ 542873. open in new tab
  24. Hjortenkrans, D., Bergbäck, B., & Häggerud, A. (2006). New metal emission patterns in road traffic environments. En- vironmental Monitoring and Assessment, 117, 85-98. https://doi.org/10.1007/s10661-006-7706-2. open in new tab
  25. Hjortenkrans, D. S., Bergbäck, B. G., & Häggerud, A. V. (2008). Transversal immission patterns and leachability of heavy metals in road side soils. Journal of Environmental Moni- toring, 10, 739-746. open in new tab
  26. Hurley, R. R., Rothwell, J. J., & Woodward, J. C. (2017). Metal contamination of bed sediments in the Irwell and Upper Mersey catchments, northwest England: Exploring the legacy of industry and urban growth. Journal of Soils and Sediments, 17, 2648-2665. https://doi.org/10.1007/ s11368-017-1668-6. open in new tab
  27. Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al- Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indi- cators, 48, 282-291. https://doi.org/10.1016/j.ecolind. 2014.08.016. open in new tab
  28. Ji, H., Li, H., Zhang, Y., Ding, H., Gao, Y., & Xing, Y. (2018). Distribution and risk assessment of heavy metals in over- lying water, porewater, and sediments of Yongding River in a coal mine brownfield. Journal of Soils and Sediments, 18, 624-639. https://doi.org/10.1007/s11368-017-1833-y. open in new tab
  29. Jinmei, B., & Xueping, L. (2014). Heavy metal pollution in surface soils of Pearl River Delta, China. Environmental Monitoring and Assessment. https://doi.org/10.1007/ s10661-014-4050-9. open in new tab
  30. Kanda, A., Ncube, F., Hwende, T., & Makumbe, P. (2018). Assessment of trace element contamination of urban sur- face soil at informal industrial sites in a low-income country. Environmental Geochemistry and Health, 40, 2617-2633. https://doi.org/10.1007/s10653-018-0127-7. open in new tab
  31. Kiedrzyńska, E., Kiedrzyński, M., Urbaniak, M., Mag- nuszewski, A., Skłodowski, M., Wyrwicka, A., et al. (2014). Point sources of nutrient pollution in the lowland river catchment in the context of the baltic Sea eutrophi- cation. Ecological Engineering, 70, 337-348. https://doi. org/10.1016/j.ecoleng.2014.06.010. open in new tab
  32. Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contami- nation-A review. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0106-z. open in new tab
  33. Li, F., Fan, Z., Xiao, P., Oh, K., Ma, X., & Hou, W. (2009). Contamination, chemical speciation and vertical distribu- tion of heavy metals in soils of an old and large industrial zone in Northeast China. Environmental Geology, 57, 1815-1823. https://doi.org/10.1007/s00254-008-1469-8. open in new tab
  34. Li, X., Shen, Z., Wai, O. W. H., & Li, Y.-S. (2001). Rx: Capi- tation… A bitter pill for the near future: 2400 American dermatologists in the year 2000? Marine Pollution Bul- letin, 42, 215-223.
  35. Likuku, A. S., Mmolawa, K., & Gaboutloeloe, G. K. (2013). Assessment of heavy metal enrichment and degree of contamination around the copper-nickel mine in the Selebi Phikwe Region, Eastern Botswana. Environment and Ecology Research, 1, 32-40. https://doi.org/10.13189/eer. 2013.010202. open in new tab
  36. Lundy, L., Alves, L., Revitt, M., & Wildeboer, D. (2017). Metal water-sediment interactions and impacts on an urban ecosystem. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ ijerph14070722. open in new tab
  37. Malvandi, H. (2017). Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran. Marine Pollution Bulletin, 117, 547-553. https://doi.org/ 10.1016/j.marpolbul.2017.02.035. open in new tab
  38. Modabberi, S., & Tashakor, M. (2018). Potentially toxic ele- ments in urban soils: Source apportionment and contami- nation assessment. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-7066-8. open in new tab
  39. Murphy, L. U., Cochrane, T. A., & O'Sullivan, A. (2015). The influence of different pavement surfaces on atmospheric copper, lead, zinc, and suspended solids attenuation and wash-off. Water, Air, and Soil Pollution. https://doi.org/10. 1007/s11270-015-2487-2. open in new tab
  40. Nawrot, N., Matej-Łukowicz, K., & Wojciechowska, E. (2018). Change in heavy metals concentrations in sediments deposited in retention tanks in a stream after a flood. Polish Journal of Environmental Studies, 28, 1-6. https://doi.org/ 10.15244/pjoes/81699. open in new tab
  41. Nawrot, N., & Wojciechowska, E. (2018). Assessment of trace metals leaching during rainfall events from building roof- tops with different types of coverage-Case study. Journal of Ecological Engineering. https://doi.org/10.12911/ 22998993/85410. open in new tab
  42. Nayak, G. N. (2015). Bioavailability of metals in estuarine sediments and their possible impacts on the environment. Environmental Social Science, 2, 1-4.
  43. Nazeer, S., Hashmi, M. Z., & Malik, R. N. (2016). Distribution, risk assessment, and source identification of heavy metals in surface sediments of River Soan, Pakistan. Clean -Soil, Air, Water. https://doi.org/10.1002/clen.201400486. open in new tab
  44. Omwene, P. I., Ö ncel, M. S., Ç elen, M., & Kobya, M. (2018). Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey). Chemosphere, 208, 782-792. https://doi.org/10.1016/J.CHEMOSPHERE. 2018.06.031. open in new tab
  45. Peng, J., Song, Y., Yuan, P., Cui, X., & Qiu, G. (2009). The remediation of heavy metals contaminated sediment. Journal of Hazardous Materials, 161, 633-640. https://doi. org/10.1016/J.JHAZMAT.2008.04.061. open in new tab
  46. PGI, G., n.d. GeoLOG PGI [WWW document]. Cent. Geol. Database. https://geolog.pgi.gov.pl/. open in new tab
  47. Qing, X., Yutong, Z., & Shenggao, L. (2015). Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicology and Environmental Safety, 120, 377-385. https://doi.org/10.1016/j.ecoenv.2015.06.019. open in new tab
  48. Ranasinghe, P. N., Chandrajith, R. L. R., Dissanayake, C. B., & Rupasinghe, M. S. (2002). Importance of grain size factor in distribution of trace elements in stream sediments of tropical high grade terrains -A case study from Sri Lanka. Geochemistry, 62(3), 243-253. https://doi.org/10.1078/ 0009-2819-00015. open in new tab
  49. Robertson, D. J., Taylor, K. G., & Hoon, S. R. (2003). Geo- chemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Applied Geo- chemistry, 18, 269-282. https://doi.org/10.1016/S0883- 2927(02)00125-7. open in new tab
  50. Sekabira, K., Origa, H. O., Basamba, T. A., Mutumba, G., & Kakudidi, E. (2010). Assessment of heavy metal pollution in the urban stream sediments and its tributaries. Interna- tional Journal of Environmental Science and Technology, 7, 435-446. https://doi.org/10.1007/BF03326153. open in new tab
  51. Silva, V., Loredo, J., Fernández-Martínez, R., Larios, R., Ordóñez, A., Gómez, B., et al. (2014). Arsenic partitioning among particle-size fractions of mine wastes and stream sediments from cinnabar mining districts. Environmental Geochemistry and Health, 36, 831-843. https://doi.org/10. 1007/s10653-014-9602-y. open in new tab
  52. Silveira, A., Jr., Pereira, J. A., Poleto, C., de Lima, J. L. M. P., Gonçalves, F. A., Alvarenga, L. A., et al. (2016). Assess- ment of loose and adhered urban street sediments and trace metals: A study in the city of Poços de Caldas, Brazil. Journal of Soils and Sediments, 16, 2640-2650. https://doi. org/10.1007/s11368-016-1467-5. open in new tab
  53. Sun, X., Fan, D., Liu, M., Tian, Y., Pang, Y., & Liao, H. (2018). Source identification, geochemical normalization and influence factors of heavy metals in Yangtze River Estuary sediment. Environmental Pollution, 241, 938-949. https:// doi.org/10.1016/j.envpol.2018.05.050. open in new tab
  54. Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174, 455-462. https://doi.org/10. 1016/j.jhazmat.2009.09.074. open in new tab
  55. Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C., & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, 636-642. https:// doi.org/10.1016/j.scitotenv.2016.02.101. open in new tab
  56. US EPA. (2007). US EPA metals risk assessment, United States Office of Air Quality, EPA 120/R-07/001.
  57. Wang, C., Liu, S., Zhao, Q., Deng, L., & Dong, S. (2012). Ecotoxicology and Environmental Safety Spatial variation and contamination assessment of heavy metals in sedi- ments in the Manwan Reservoir, Lancang River. Ecotoxi- cology and Environmental Safety, 82, 32-39. https://doi. org/10.1016/j.ecoenv.2012.05.006. open in new tab
  58. Wang, Q., Sha, Z., Wang, J., Du, J., Hu, J., & Ma, Y. (2019). Historical changes in the major and trace elements in the sedimentary records of Lake Qinghai, Qinghai-Tibet Pla- teau: Implications for anthropogenic activities. Environ- mental Geochemistry and Health. https://doi.org/10.1007/ s10653-019-00244-3. open in new tab
  59. Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals-Methodology of calcu- lation for pollution assessment (minireview). Environ- mental Monitoring and Assessment. https://doi.org/10. 1007/s10661-017-6340-5. open in new tab
  60. Weissmannová, H. D., Pavlovský, J., & Chovanec, P. (2015). Heavy metal contaminations of urban soils in Ostrava, Czech Republic: Assessment of metal pollution and using principal component analysis. International Journal of Environmental Research, 9(2), 683-696.
  61. Wen, J., Yi, Y., & Zeng, G. (2016). Effects of modified zeolite on the removal and stabilization of heavy metals in con- taminated lake sediment using BCR sequential extraction. Journal of Environmental Management, 178, 63-69. https://doi.org/10.1016/j.jenvman.2016.04.046. WHO. (2001). Environmental health criteria 221. open in new tab
  62. Wojciechowska, E., Nawrot, N., Walkusz-Miotk, J., Matej- Łukowicz, K., & Pazdro, K. (2019). Heavy metals in sed- iments of urban streams: Contamination and health risk assessment of influencing factors. Sustainability, 11, 563. https://doi.org/10.3390/su11030563. open in new tab
  63. Wojciechowska, E., Rackiewicz, A., Nawrot, N., Matej- Łukowicz, K., & Obarska-Pempkowiak, H. (2017). Investigations of heavy metals distribution in bottom sed- iments from retention tanks in the urbanized watershed. Annual Set The Environment Protection, 19, 572-589.
  64. Wu, P., Yin, A., Yang, X., Zhang, H., Fan, M., & Gao, C. (2017). Distribution and source identification of heavy metals in the sediments of a river flowing an urbanization gradient, Eastern China. Environmental Earth Sciences, 76, 1-11. https://doi.org/10.1007/s12665-017-7068-9. open in new tab
  65. Yan, G., Mao, L., Liu, S., Mao, Y., Ye, H., Huang, T., et al. (2018). Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Science of the Total Environment. https://doi.org/10. 1016/j.scitotenv.2018.02.340. open in new tab
Verified by:
Gdańsk University of Technology

seen 146 times

Recommended for you

Meta Tags