Structural and electrical properties of titanium-doped yttrium niobate - Publication - Bridge of Knowledge

Search

Structural and electrical properties of titanium-doped yttrium niobate

Abstract

In this work, the influence of the substitution of niobium by titanium in Y3Nb1-xTixO7-δ on the structural and electrical properties is reported. Several experimental techniques, i.e. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-Ray Photoelectron Spectroscopy (XPS) and Electrochemical Impedance Spectroscopy (EIS), were applied to investigate the system Y3Nb1-xTixO7-δ. Titanium in Y3Nb1-xTixO7-δ is an acceptor-type dopant which charge is mainly compensated by oxygen vacancies, moreover, it may adopt different valence states, therefore, oxygen ion-, proton- and electronic-type conductivity are expected. Very interesting, non-monotonic changes in electrical and structural properties as a function of titanium content were observed. The competition between the increasing charge carrier concentration and structural phenomena such as short-range pyrochlore ordering and/or vacancy clustering was proposed as responsible for this non-monotonicity.

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 4

    Scopus

Cite as

Full text

download paper
downloaded 44 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY-NC-ND open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
JOURNAL OF ALLOYS AND COMPOUNDS no. 767, pages 1186 - 1195,
ISSN: 0925-8388
Language:
English
Publication year:
2018
Bibliographic description:
Winiarz P., Mielewczyk-Gryń A., Wachowski S., Jasiński P., Witkowska A., Gazda M.: Structural and electrical properties of titanium-doped yttrium niobate// JOURNAL OF ALLOYS AND COMPOUNDS. -Vol. 767, (2018), s.1186-1195
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.jallcom.2018.07.134
Bibliography: test
  1. J. Lee, M. Yashima, M. Yoshimura, Ionic conductivity of fluorite-structured solid solution Y 0.8Nb0.2O1.7, Solid State Ionics. 107 (1998) 47-51. doi:http://dx.doi.org/10.1016/S0167- 2738(97)00529-8. open in new tab
  2. T. Okubo, M. Kakihana, Low temperature synthesis of Y3NbO7 by polymerizable complex method: Utilization of a methanol-citric acid solution of NbCl5 as a novel niobium precursor, J. Alloys Compd. 256 (1997) 151-154. doi:10.1016/S0925-8388(96)02986-6. open in new tab
  3. H. Yamamura, Electrical conductivity of the systems, (Y1−xMx)3NbO7 (M=Ca, Mg) and open in new tab
  4. Y3Nb1−xMxO7 (M′=Zr and Ce), Solid State Ionics. 123 (1999) 279-285. doi:10.1016/S0167- 2738(99)00098-3. open in new tab
  5. Raghvendra, P. Singh, Electrical conductivity of YSZ-SDC composite solid electrolyte synthesized via glycine-nitrate method, Ceram. Int. 43 (2017) 11692-11698. doi:10.1016/j.ceramint.2017.05.359. open in new tab
  6. H. Deng, W. Zhang, X. Wang, Y. Mi, W. Dong, W. Tan, B. Zhu, An ionic conductor Ce0.8Sm0.2O2−δ(SDC) and semiconductor Sm0.5Sr0.5CoO3(SSC) composite for high performance electrolyte-free fuel cell, Int. J. Hydrogen Energy. 42 (2017) 22228-22234. doi:10.1016/j.ijhydene.2017.03.089. open in new tab
  7. A. Mielewczyk-Gryn, A. Navrotsky, Enthalpies of formation of rare earth niobates, RE3NbO7, Am. Mineral. 100 (2015) 1578-1583. doi:http://dx.doi.org/10.2138/am-2015-5210. open in new tab
  8. L. López-Conesa, J.M. Rebled, M.H. Chambrier, K. Boulahya, J.M. González-Calbet, M.D. open in new tab
  9. Braida, G. Dezanneau, S. Estradé, F. Peiró, Local Structure of Rare Earth Niobates (RE3NbO 7, RE = Y, Er, Yb, Lu) for Proton Conduction Applications, Fuel Cells. 13 (2013) 29-33. doi:10.1002/fuce.201200136. open in new tab
  10. A. Chesnaud, M.D. Braida, S. Estradé, F. Peiró, A. Tarancón, A. Morata, G. Dezanneau, High- temperature anion and proton conduction in RE3NbO7 (RE=La, Gd, Y, Yb, Lu) compounds, J. Eur. Ceram. Soc. 35 (2015) 3051-3061. doi:10.1016/j.jeurceramsoc.2015.04.014. open in new tab
  11. M. Inabayashi, Y. Doi, M. Wakeshima, Y. Hinatsu, Synthesis, crystal structures and magnetic properties of fluorite-related compounds Ce3MO7(M = Nb, Ta), J. Solid State Chem. 254 (2017) 150-154. doi:10.1016/j.jssc.2017.07.022. open in new tab
  12. A. Walasek, E. Zych, J. Zhang, S. Wang, Synthesis, morphology and spectroscopy of cubic Y3NbO7:Er, J. Lumin. 127 (2007) 523-530. doi:10.1016/j.jlumin.2007.02.063. open in new tab
  13. H. Kobayashi, H. Ogino, T. Mori, H. Yamamura, T. Mitamura, Preparation of Y3NbO7 Powders with Excess Conductivity of the Sintered Oxygen Bodies, J. Ceram. Soc. Japan. 101 (1993) 671-674. open in new tab
  14. L. Cai, J.C. Nino, Structure and dielectric properties of Ln3NbO7 (Ln = Nd, Gd, Dy, Er, Yb and Y), J. Eur. Ceram. Soc. 27 (2007) 3971-3976. doi:10.1016/j.jeurceramsoc.2007.02.077. open in new tab
  15. D. Marrocchelli, P. Madden, S.T. Norberg, S. Hull, Cation composition effects on oxide conductivity in the Zr2Y2O7-Y3NbO7 system., J. Phys. Condens. Matter. 21 (2009) 405403. doi:10.1088/0953-8984/21/40/405403. open in new tab
  16. S. Hull, S.T. Norberg, I. Ahmed, S.G. Eriksson, D. Marrocchelli, P.A. Madden, Oxygen vacancy ordering within anion-deficient Ceria, J. Solid State Chem. 182 (2009) 2815-2821. doi:10.1016/j.jssc.2009.07.044. open in new tab
  17. H.P. Rooksby, E.A.D. White, Rare-Earth Niobates and Tantalates of Defect Fluorite-and Weberite-Type Structures, J. Am. Ceram. Soc. 47 (1964) 94-96. doi:10.1111/j.1151- 2916.1964.tb15663.x. open in new tab
  18. S. Wachowski, A. Mielewczyk-Gryn, M. Gazda, Effect of isovalent substitution on microstructure and phase transition of LaNb1-xMxO4 (M=Sb, v or Ta; X=0.05-0.3), J. Solid State Chem. 219 (2014) 201-209. doi:10.1016/j.jssc.2014.07.041. open in new tab
  19. B. Le Diard, J.-P.Gorrec, C. Montella, Handbook of Electrochemical Impedance Spectroscopy ELECTRICAL CIRCUITS, (2013) 33. http://www.bio-logic.info/potentiostat- electrochemistry-ec-lab/apps-literature/eis-literature/hanbook-of-eis/. open in new tab
  20. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, Handbook of X-Ray Photoelectron Spectroscopy, (1979) 1990. doi:10.1002/sia.740030412. open in new tab
  21. J.T.S. Irvine, D.C. Sinclair, A.R. West, Electroceramics: Characterization by Impedance Spectroscopy, Adv. Mater. 2 (1990) 132-138. doi:10.1002/adma.19900020304. open in new tab
  22. D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen, Ann. Phys. 416 (1935) 636-664. doi:10.1002/andp.19354160705. open in new tab
  23. A. Mielewczyk-Gryn, T. Lendze, K. Gdula-Kasica, P. Jasinski, A. Krupa, B. Kusz, M. Gazda, Characterization of CaTi0.9Fe0.1O3/La0.98Mg0.02NbO4 composite, Open Phys. 11 (2013) 213- 218. doi:10.2478/s11534-012-0152-6. open in new tab
  24. S. Wachowski, A. Mielewczyk-Gryń, K. Zagórski, C. Li, P. Jasiński, S.J. Skinner, R. Haugsrud, M. Gazda, Influence of Sb-substitution on ionic transport in lanthanum orthoniobates, J. Mater. Chem. A. 4 (2016) 11696-11707. doi:10.1039/C6TA03403A. open in new tab
  25. K. Gdula-Kasica, A. Mielewczyk-Gryn, S. Molin, P. Jasinski, A. Krupa, B. Kusz, M. Gazda, Optimization of microstructure and properties of acceptor-doped barium cerate, in: Solid State Ionics, 2012: pp. 245-249. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 142 times

Recommended for you

Meta Tags