Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties - Publication - MOST Wiedzy

Search

Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties

Abstract

The results of electrical conductivity studies, structural measurements and thermogravimetric analysis of La1−xTbxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) are presented and discussed. The phase transition temperatures, measured by high-temperature x-ray diffraction, were 480 °C, 500 °C, and 530 °C for La0.9Tb0.1NbO4+δ, La0.8Tb0.2NbO4+δ, and La0.7Tb0.3NbO4+δ, respectively. The impedance spectroscopy results suggest mixed conductivity of oxygen ions and electron holes in dry conditions and protons in wet. The water uptake has been analyzed by the means of thermogravimetry revealing a small mass increase in the order of 0.002% upon hydration, which is similar to the one achieved for undoped lanthanum orthoniobate.

Citations

  • 2

    CrossRef

  • 1

    Web of Science

  • 1

    Scopus

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
Crystals no. 9, edition 2, pages 1 - 14,
ISSN: 2073-4352
Language:
English
Publication year:
2019
Bibliographic description:
Dzierzgowski K., Wachowski S., Gazda M., Mielewczyk-Gryń A.: Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties// Crystals. -Vol. 9, iss. 2 (2019), s.1-14
DOI:
Digital Object Identifier (open in new tab) 10.3390/cryst9020091
Bibliography: test
  1. Molenda, J.; Kupecki, J.; Baron, R.; Blesznowski, M.; Brus, G.; Brylewski, T.; Bucko, M.; Chmielowiec, J.; Cwieka, K.; Gazda, M.; et al. Status report on high temperature fuel cells in Poland-Recent advances and achievements. Int. J. Hydrogen Energy 2017, 42, 4366-4403. [CrossRef] open in new tab
  2. Gdula-Kasica, K.; Mielewczyk-Gryn, A.; Molin, S.; Jasinski, P.; Krupa, A.; Kusz, B.; Gazda, M. Optimization of microstructure and properties of acceptor-doped barium cerate. Solid State Ionics 2012, 225, 245-249. [CrossRef] open in new tab
  3. Haugsrud, R.; Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 2006, 5, 193-196. [CrossRef] open in new tab
  4. Animitsa, I.; Iakovleva, A.; Belova, K. Electrical properties and water incorporation in A-site deficient perovskite La 1-x Ba x Nb 3 O 9-0.5x . J. Solid State Chem. 2016, 238, 156-161. [CrossRef] open in new tab
  5. Hibino, T.; Mizutani, K.; Yajima, T.; Iwahara, H. Evaluation of proton conductivity in SrCeO 3 , BaCeO 3 , CaZrO 3 and SrZrO 3 by temperature programmed desorption method. Solid State Ionics 1992, 57, 303-306. [CrossRef] open in new tab
  6. Escolástico, S.; Vert, V.B.; Serra, J.M. Preparation and characterization of nanocrystalline mixed proton-electronic conducting materials based on the system Ln 6 WO 12 . Chem. Mater. 2009, 21, 3079-3089. [CrossRef] open in new tab
  7. Yajima, T.; Kazeoka, H.; Yogo, T.; Iwahara, H. Proton conduction in sintered oxides based on CaZrO 3 . Solid State Ionics 1991, 47, 271-275. [CrossRef] open in new tab
  8. Sakai, T.; Isa, K.; Matsuka, M.; Kozai, T.; Okuyama, Y.; Ishihara, T.; Matsumoto, H. Electrochemical hydrogen pumps using Ba doped LaYbO 3 type proton conducting electrolyte. Int. J. Hydrogen Energy 2013, 38, 6842-6847. [CrossRef] open in new tab
  9. Haugsrud, R.; Ballesteros, B.; Lira-Cantu, M.; Norby, T. Ionic and electronic conductivity of 5% Ca-doped GdNbO 4 . J. Electrochem. Soc. 2006, 153, J87-J90. [CrossRef] open in new tab
  10. Bayliss, R.D.; Pramana, S.S.; An, T.; Wei, F.; Kloc, C.L.; White, A.J.P.; Skinner, S.J.; White, T.J.; Baikie, T. Fergusonite-type CeNbO 4+δ : Single crystal growth, symmetry revision and conductivity. J. Solid State Chem. 2013, 204, 291-297. [CrossRef] open in new tab
  11. Li, C.; Bayliss, R.D.; Skinner, S.J. Crystal structure and potential interstitial oxide ion conductivity of LnNbO 4 and LnNb 0.92 W 0.08 O 4.04 (Ln = La, Pr, Nd). Solid State Ionics 2014, 262, 530-535. [CrossRef] open in new tab
  12. Huang, H.; Wang, T.; Zhou, H.; Huang, D.; Wu, Y.; Zhou, G.; Hu, J.; Zhan, J. Luminescence, energy transfer, and up-conversion mechanisms of Yb3+and Tb3+co-doped LaNbO 4 . J. Alloys Compd. 2017, 702, 209-215. [CrossRef] open in new tab
  13. Haugsrud, R.; Norby, T. High-temperature proton conductivity in acceptor-doped LaNbO 4 . Solid State Ionics 2006, 177, 1129-1135. [CrossRef] open in new tab
  14. Hakimova, L.; Kasyanova, A.; Farlenkov, A.; Lyagaeva, J.; Medvedev, D.; Demin, A.; Tsiakaras, P. Effect of isovalent substitution of La 3+ in Ca-doped LaNbO 4 on the thermal and electrical properties. Ceram. Int. 2019, 45, 209-215. [CrossRef] open in new tab
  15. Mielewczyk-Gryn, A.; Wachowski, S.; Zagórski, K.; Jasiński, P.; Gazda, M. Characterization of magnesium doped lanthanum orthoniobate synthesized by molten salt route. Ceram. Int. 2015, 41, 7847-7852. [CrossRef] open in new tab
  16. Mielewczyk-Gryn, A.; Gdula, K.; Lendze, T.; Kusz, B.; Gazda, M. Nano-and microcrystals of doped niobates. Cryst. Res. Technol. 2010, 45, 1225-1228. [CrossRef] open in new tab
  17. Fjeld, H.; Kepaptsoglou, D.M.; Haugsrud, R.; Norby, T. Charge carriers in grain boundaries of 0.5% Sr-doped LaNbO 4 . Solid State Ionics 2010, 181, 104-109. [CrossRef] open in new tab
  18. Mokkelbost, T.; Lein, H.L.; Vullum, P.E.; Holmestad, R.; Grande, T.; Einarsrud, M.-A. Thermal and mechanical properties of LaNbO 4 -based ceramics. Ceram. Int. 2009, 35, 2877-2883. [CrossRef] open in new tab
  19. Nguyen, D.; Kim, Y.H.; Lee, J.S.; Fisher, J.G. Structure, morphology, and electrical properties of proton conducting La 0.99 Sr 0.01 NbO 4-δ synthesized by a modified solid state reaction method. Mater. Chem. Phys. 2017, 202, 320-328. [CrossRef] open in new tab
  20. Brandão, A.D.; Antunes, I.; Frade, J.R.; Torre, J.; Kharton, V.V.; Fagg, D.P. Enhanced Low-Temperature Proton Conduction in Sr 0.02 La 0.98 NbO 4−δ by Scheelite Phase Retention. Chem. Mater. 2010, 22, 6673-6683. [CrossRef] open in new tab
  21. Wachowski, S.; Mielewczyk-Gryn, A.; Gazda, M. Effect of isovalent substitution on microstructure and phase transition of LaNb 1−x M x O 4 (M = Sb, V or ta; x = 0.05 to 0.3). J. Solid State Chem. 2014, 219, 201-209. [CrossRef] open in new tab
  22. Brandão, A.D.; Nasani, N.; Yaremchenko, A.A.; Kovalevsky, A.V.; Fagg, D.P. Solid solution limits and electrical properties of scheelite SryLa 1-y Nb 1-x V x O 4-δ materials for x = 0.25 and 0.30 as potential proton conducting ceramic electrolytes. Int. J. Hydrogen Energy 2018, 43, 18682-18690. [CrossRef] open in new tab
  23. Wachowski, S.; Mielewczyk-Gryn, A.; Zagorski, K.; Li, C.; Jasinski, P.; Skinner, S.J.; Haugsrud, R.; Gazda, M. Influence of Sb-substitution on ionic transport in lanthanum orthoniobates. J. Mater. Chem. A 2016, 4, 11696-11707. [CrossRef] open in new tab
  24. Mielewczyk-Gryn, A.; Wachowski, S.; Strychalska, J.; Zagórski, K.; Klimczuk, T.; Navrotsky, A.; Gazda, M. Heat capacities and thermodynamic properties of antimony substituted lanthanum orthoniobates. Ceram. Int. 2016, 42, 7054-7059. [CrossRef] open in new tab
  25. Mielewczyk-Gryn, A.; Wachowski, S.; Lilova, K.I.; Guo, X.; Gazda, M.; Navrotsky, A. Influence of antimony substitution on spontaneous strain and thermodynamic stability of lanthanum orthoniobate. Ceram. Int. 2015, 41, 2128-2133. [CrossRef] open in new tab
  26. Wachowski, S.; Kamecki, B.; Winiarz, P.; Dzierzgowski, K.; Mielewczyk-Gryń, A.; Gazda, M. Tailoring structural properties of lanthanum orthoniobates through an isovalent substitution on the Nb-site. Inorg. Chem. Front. 2018, 5, 2157-2166. [CrossRef] open in new tab
  27. Li, M.; Wu, R.; Zhu, L.; Cheng, J.; Hong, T.; Xu, C. Enhanced sinterability and conductivity of cobalt doped lanthanum niobate as electrolyte for proton-conducting solid oxide fuel cell. Ceram. Int. 2019, 45, 573-578. [CrossRef] open in new tab
  28. Dzierzgowski, K.; Wachowski, S.; Gojtowska, W.; Lewandowska, I.; Jasiński, P.; Gazda, M.; Mielewczyk-Gryń, A. Praseodymium substituted lanthanum orthoniobate: Electrical and structural properties. Ceram. Int. 2018, 44, 8210-8215. [CrossRef] open in new tab
  29. Packer, R.J.; Skinner, S.J.; Yaremchenko, A.A.; Tsipis, E.V.; Kharton, V.V.; Patrakeev, M.V.; Bakhteeva, Y.A. Lanthanum substituted CeNbO 4+δ scheelites: Mixed conductivity and structure at elevated temperatures. J. Mater. Chem. 2006, 16, 3503. [CrossRef] open in new tab
  30. Rodríguez-Carvajal, J. Recent Developments for the Program FULLPROF; Commission on Powder Diffraction: Perth, Australia, 2001; Volume 26, ISBN 4971168915. open in new tab
  31. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751-767. [CrossRef] open in new tab
  32. Stubičan, V.S. High-Temperature Transitions in Rare Earth Niobates and TantaIates. J. Am. Ceram. Soc. 1964, 47, 55-58. [CrossRef] open in new tab
  33. Yamazaki, Y.; Babilo, P.; Haile, S.M. Defect chemistry of yttrium-doped barium zirconate: A thermodynamic analysis of water uptake. Chem. Mater. 2008, 20, 6352-6357. [CrossRef] open in new tab
  34. Mielewczyk-Gryń, A. Water uptake analysis of the acceptor-doped lanthanum orthoniobates. J. Therm. Anal. Calorim. 2019, submitted. open in new tab
  35. Huse, M.; Norby, T.; Haugsrud, R. Effects of A and B site acceptor doping on hydration and proton mobility of LaNbO 4 . Int. J. Hydrogen Energy 2012, 37, 8004-8016. [CrossRef] open in new tab
  36. Abrantes, J.C.C.; Labrincha, J.A.; Frade, J.R. Applicability of the brick layer model to describe the grain boundary properties of strontium titanate ceramics. J. Eur. Ceram. Soc. 2000, 20, 1603-1609. [CrossRef] open in new tab
  37. Haile, S.M.; West, D.L.; Campbell, J. The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate. J. Mater. Res. 1998, 13, 1576-1595. [CrossRef] open in new tab
  38. Berger, P.; Mauvy, F.; Grenier, J.-C.; Sata, N.; Magrasó, A.; Haugsrud, R.; Slater, P.R. Proton-Conducting Ceramics: From Fundamentals to Applied Research; open in new tab
  39. Marrony, M., Ed.; Pan Stanford Publishing: Singapore, 2016; Chapter 1; pp. 1-72. open in new tab
  40. Mather, G.C.; Fisher, C.A.J.; Islam, M.S. Defects, dopants, and protons in LaNbO 4 . Chem. Mater. 2010, 22, 5912-5917. [CrossRef] open in new tab
  41. Packer, R.J.; Tsipis, E.V.; Munnings, C.N.; Kharton, V.V.; Skinner, S.J.; Frade, J.R. Diffusion and conductivity properties of cerium niobate. Solid State Ionics 2006, 177, 2059-2064. [CrossRef] open in new tab
  42. Wang, D.Y.; Park, D.S.; Griffith, J.; Nowick, A.S. Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 1981, 2, 95-105. [CrossRef] open in new tab
  43. Guo, X.; Waser, R. Electrical properties of the grain boundaries of oxygen ion conductors: Acceptor-doped zirconia and ceria. Prog. Mater. Sci. 2006, 51, 151-210. [CrossRef] open in new tab
  44. Kilner, J.A.; Brook, R.J. A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 1982, 6, 237-252. [CrossRef] open in new tab
  45. Norby, T.; Larring, Y. Concentration and transport of protons in oxides. Curr. Opin. Solid State Mater. Sci. 1997, 2, 593-599. [CrossRef] open in new tab
  46. Islam, M.S.; Davies, R.A.; Fisher, C.A.J.; Chadwick, A.V. Defects and protons in the CaZrO 3 perovskite and Ba 2 In 2 O 5 brownmillerite: Computer modelling and EXAFS studies. Solid State Ionics 2001, 145, 333-338. [CrossRef] open in new tab
  47. Toyoura, K.; Sakakibara, Y.; Yokoi, T.; Nakamura, A.; Matsunaga, K. Oxide-ion conduction: Via interstitials in scheelite-type LaNbO 4 : A first-principles study. J. Mater. Chem. A 2018, 6, 12004-12011. [CrossRef] open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 28 times

Recommended for you

Meta Tags