Thermal cooling process by nanofluid flowing near stagnating point of expanding surface under induced magnetism force: A computational case study - Publication - Bridge of Knowledge

Search

Thermal cooling process by nanofluid flowing near stagnating point of expanding surface under induced magnetism force: A computational case study

Abstract

This paper is dedicated to the exam of entropy age and research of the effect of mixing nanosolid additives over an extending sheet. In this review, Newtonian nanofluid version turned into researched at the actuated appealing field, heat radiation and variable heat conductivity results. With becoming modifications, the proven PDEs are moved into popular differential situations and paintings mathematically making use of a specific mathematical plan called the Keller box method (KBM). The ranges of different dimensionless parameters used in our study are volume fraction of nanoparticles 0.01≤ϕ≤0.04, magnetic parameter 0.5≤Λ≤2, heat source/sink parameter 0.5≤Q0≤2, Prandtl number 5.7≤Pr≤6.2, Reynolds number 5≤Re≤15, which shows up during mathematical arrangement are shown as tables and charts. Positive modifications in heat radiation and heat conductivity affects increment the hotness pass coefficient of solar primarily based totally plane wings. Titanium alloy primarily based totally water (H2O) are taken into consideration for our research. We can see that because the Reynolds range and Brinkman range increment, the entropy increments. The thermodynamic exhibition of Titanium alloy-water (Ti6Al4V- H2O) nanofluid has been portrayed higher that of base nanofluid with comparable situations. Recorded hypothetical reproductions may be greater beneficial to similarly increase daylight primarily based totally nuclear strength frameworks

Citations

  • 4

    CrossRef

  • 0

    Web of Science

  • 5

    Scopus

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
Case Studies in Thermal Engineering no. 36,
ISSN: 2214-157X
Language:
English
Publication year:
2022
Bibliographic description:
Shahzad F., Jamshed W., Pasha A. A., Safdar R., Alam M. M., Arshad M., Hussain S. M., Hafeez M. B., Krawczuk M.: Thermal cooling process by nanofluid flowing near stagnating point of expanding surface under induced magnetism force: A computational case study// Case Studies in Thermal Engineering -Vol. 36, (2022), s.102190-
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.csite.2022.102190
Verified by:
Gdańsk University of Technology

seen 96 times

Recommended for you

Meta Tags