Unassisted formation of hemiaminal ether from 4-aminopyridine and o-vanillin - experimental and theoretical study - Publication - Bridge of Knowledge

Search

Unassisted formation of hemiaminal ether from 4-aminopyridine and o-vanillin - experimental and theoretical study

Abstract

The reactions between o-vanillin and three isomeric aminopyridines lead to imines of diverse spatial conformation and reactivity. The direct products of these simple reactions carried out in methanol are either imine compounds formed in the reactions of 2- amino- and 3-aminopyridine with o-vanillin or the α-aminoether formed in the reaction of o-vanillin with 4-aminopyridine. The Schiff-type derivative of 4-aminopyridine and o-vanillin, which is described in this paper for the first time, is very reactive and can only be obtained indirectly from the α-aminoether in anhydrous conditions. All compounds are characterized by X-ray diffraction and FT-IR and NMR spectroscopies. The DFT calculations at all-electron BLYP/Q4ZP level of theory are utilized to explain the differences between the reactivity of isomeric aminopyridines and their imine derivatives.

Citations

  • 8

    CrossRef

  • 0

    Web of Science

  • 1 0

    Scopus

Cite as

Full text

download paper
downloaded 145 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
STRUCTURAL CHEMISTRY no. 29, pages 1189 - 1200,
ISSN: 1040-0400
Language:
English
Publication year:
2018
Bibliographic description:
Mielcarek A., Wiśniewska A., Dołęga A.: Unassisted formation of hemiaminal ether from 4-aminopyridine and o-vanillin - experimental and theoretical study// STRUCTURAL CHEMISTRY. -Vol. 29, iss. 4 (2018), s.1189-1200
DOI:
Digital Object Identifier (open in new tab) 10.1007/s11224-018-1105-5
Bibliography: test
  1. Dias Pires MJ, Poeira DL, Marques MMB (2015) Metal-catalyzed cross- coupling reactions of aminopyridines. Eur J Org Chem:7197-7234 open in new tab
  2. Park YJ, Park JW, Jun CH (2008) Metal-organic cooperative catal- ysis in C-H and C-C bond activation and its concurrent recovery. Acc Chem Res 41:222-234 open in new tab
  3. Ko HM, Dong G (2014) Cooperative activation of cyclobutanones and olefins leads to bridged-ring systems by a catalytic [4+2] cou- pling. Nat Chem 6:739-744 open in new tab
  4. Xu F, Tao T, Liu QQ, Geng J, Huang W (2012) A special case of copper(II) complex having monodentate and uncoordinated 4- aminopyridine molecules stabilized by highly cooperative supra- molecular interactions. Inorg Chim Acta 392:465-468 open in new tab
  5. Abu-Youssef MAM, Langer V, Öhrström L (2006) A unique ex- ample of a high symmetry three-and four-connected hydrogen bonded 3D-network. Chem Commun:1082-1084 open in new tab
  6. Tudor V, Mocanu T, Tuna F, Madalan AM, Maxim C, Shova S, Andruh M (2013) Mixed ligand binuclear alkoxo-bridged copper(II) complexes derived from aminoalcohols and nitrogen li- gands. J Mol Struct 1046:164-170 open in new tab
  7. El Osta R, Demont A, Audebrand N, Molard Y, Nguyen TT, Gautier R, Brylev KA, Mironov YV, Naumov NG, Kitamura N, Cordier S (2015) Supramolecular frameworks built up from red-phosphorescent trans- Re 6 cluster building blocks: one pot synthesis, crystal structures, and DFT investigations. Z Anorg Allg Chem 641:1156-1163 open in new tab
  8. Fernandes RJ, Frem RCG, da Silva PB, Freitas RS, Silva P, Fernandes JA, Rocha J, Almeida Paz FA (2013) Supramolecular assemblies and magnetic behaviors of the M(II)/p-aminopyridine/ malonate (M = Ni, Mn, Cu, Co) systems. Polyhedron 57:112-117 open in new tab
  9. Tadros AM, Royko MM, Kelley SP, Belmore K, Rogers RD, Vincent JB (2015) Aminopyridine complexes of Cr(III) basic car- boxylates as potential polymer precursors: synthesis, characteriza- tion, and crystal structure of [Cr 3 O(propionate) 6 (X- aminopyridine) 3 ] + (X = 3 or 4). Polyhedron 100:17-27 open in new tab
  10. Dojer B, Pevec A, Belaj F, Kristl M (2015) Two new zinc(II) ace- tates with 3-and 4-aminopyridine: syntheses and structural prop- erties. Acta Chim Slov 62:312-318 open in new tab
  11. Arumuganathan T, Srinivasa Rao A, Das SK (2010) Polyoxometalate supported transition metal complexes: synthesis, crystal structures, and supramolecular chemistry. Cryst Growth Des 10:4272-4284 open in new tab
  12. van Diemen HA, Polman CH, van Dongen TM, van Loenen AC, Nauta JJ, Taphoorn MJ, van Walbeek HK, Koetsier JC (1992) The effect of 4-aminopyridine on clinical signs in multiple sclerosis: a randomized, placebo-controlled, double-blind, cross-over study. Ann Neurol 32:123-130 open in new tab
  13. Savin Z, Lejbkowicz I, Glass-Marmor L, Lavi I, Rosenblum S, Miller A (2016) Effect of Fampridine-PR (prolonged released 4- aminopyridine) on the manual functions of patients with multiple sclerosis. J Neurol Sci 360:102-109 open in new tab
  14. Kim ES (2017) Fampridine prolonged release: a review in multiple sclerosis patients with walking disability. Drugs 77:1593-1602 open in new tab
  15. Glover WE (1982) The aminopyridines. Gen Pharmac 13:259-285 open in new tab
  16. Niño A, Muñoz-Caro C (2001) Theoretical analysis of the molec- ular determinants responsible for the K-channel blocking by aminopyridines. Biophys Chem 91:49-60 open in new tab
  17. Caballero NA, Melendez FJ, Muñoz-Caro C, Niño A (2006) Theoretical prediction of relative and absolute pK a values of aminopyridines. Biophys Chem 124:155-160 open in new tab
  18. Judge SIV, Bever CT (2006) Potassium channel blockers in multi- ple sclerosis: neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 111:224-259 open in new tab
  19. Perrin DD (1965) Dissociation constants of organic bases in aque- ous solution. Butterworths, London open in new tab
  20. Rozière J, Williams JM, Grech E, Malarski Z, Sobczyk LA (1980) Strong asymmetric N-H-N hydrogen bond: neutron diffraction and IR spectroscopic studies of 4-aminopyridine hemiperchlorate. J Chem Phys 72:6117-6122 open in new tab
  21. Teulon P, Delaplane RG, Olovsson I (1985) Structure of the β phase of 4-aminopyridinium hemiperchlorate, [H(C 5 H 6 N 2 ) 2 ]CIO 4 . Acta Crystallogr Sect C 41:479-483 open in new tab
  22. Draguta S, Fonari MS, Masunov AE, Zazueta J, Sullivan S, Antipin MY, Timofeeva TV (2013) New acentric materials constructed from aminopyridines and 4-nitrophenol. CrystEngComm 15:4700-4710 open in new tab
  23. Pavlovetc IM, Draguta S, Fokina MI, Timofeeva TV, Denisyuk IY (2016) Synthesis, crystal growth, thermal and spectroscopic studies of acentric materials constructed from aminopyridines and 4-nitro- phenol. Optics Commun 362:64-68 open in new tab
  24. Kumar KN, Ramesh R (2004) Synthesis, characterization, redox property and biological activity of Ru(II) carbonyl complexes con- taining O,N-donor ligands and heterocyclic bases. Spectrochim Acta, Part A 60:2913-2918 open in new tab
  25. Jing Z-L, Li R-N, Yang N (2007) 2-Methoxy-6-(3- pyridyliminomethyl)phenol. Acta Crystallogr Sect E Struct Rep Online 63:o3001 open in new tab
  26. You L, Berman JS, Anslyn EV (2011) Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing. Nat Chem 3:943-948 open in new tab
  27. Jo HH, Edupuganti R, Lei You L, Dalby KN, Anslyn EV (2015) Mechanistic studies on covalent assemblies of metal-mediated hemi-aminal ethers. Chem Sci 6:158-164 open in new tab
  28. Tessarolo J, Venzo A, Bottaro G, Armelao L, Rancan M (2017) Hampered subcomponent self-assembly leads to an aminal ligand: reactivity with silver(I) and copper(II). Eur J Inorg Chem:30-34 open in new tab
  29. Beltrán Á, Álvarez E, Díaz-Requejo MM, Pérez PJ (2015) Direct synthesis of hemiaminal ethers via a three-component reaction of aldehydes, amines and alcohols. Adv Synth Catal 357:2821-2826 open in new tab
  30. Wajda-Hermanowicz K, Pieniążczak D, Zatajska A, Wróbel R, Drabent K, Ciunik Z (2015) A study on the condensation reaction of 4-amino-3,5-dimethyl-1,2,4-triazole with benzaldehydes: struc- ture and spectroscopic properties of some new stable hemiaminals. Molecules 20:17109-17131 open in new tab
  31. Berski S, Gordon AJ, Ciunik Z (2015) The DFT study on the reac- tion between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and schiff bases. Effect of substitution and solvation on the reaction mechanism. J Mol Model 21:1-17 open in new tab
  32. Wajda-Hermanowicz K, Pieniążczak D, Wróbel R, Zatajska A, Ciunik Z, Berski S (2016) A study on the condensation reaction of aryl substituted 4-amine-1,2,4-triazole with benzaldehydes: structures and spectroscopic properties of Schiff bases and stable hemiaminals. J Mol Struct 1114:108-122 open in new tab
  33. Kwiecień A, Ciunik Z (2015) Stable hemiaminals: 2- aminopyrimidine derivatives. Molecules 20:14365-14376 open in new tab
  34. STOE CGH (2015) X-area-software package for collecting single- crystal data on STOE area-detector diffractometers, for image process- ing. Scaling reflection intensities and for outlier rejection, Darmstadt
  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C: Cryst Struct Commun 71:3-8 open in new tab
  36. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2: a refinement and analysis program. J Appl Crystallogr 42:339-341 open in new tab
  37. Farrugia LJ (2012) WinGX and ORTEP for windows: an update. J Appl Crystallogr 45:849-854 open in new tab
  38. Spek AL (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure fac- tors. Acta Crystallogr Sect C: Cryst Struct Commun 71:9-18 open in new tab
  39. Flack H (1983) On enantiomorph-polarity estimation. Acta Crystallogr Sect A 39:876-881 open in new tab
  40. Baerends EJ, Ziegler T, Autschbach J, Bashford D, Bérces A, Bickelhaupt FM, Bo C, Boerrigter PM, Cavallo L, Chong DP, Deng L, Dickson RM, Ellis DE, von Faassen M, Fan L, Fischer TH, Guerra CF, Franchini M, Ghysels A, Giammona A, von Gisbergen SJA, Götz AW, Groeneveld JA, Gritsenko OV, Grüning M, Gusarov S, Harris FE, van den Hoek P, Jacob CR, Jacobsen H, Jensen L, Kaminski JW, van Kessel G, Kootstra F, Kovalenko A, Krykunov MV, von Lenthe E, McCormack DA, Michalak A, Mitoraj M, Morton SM, Neugebauer J, Nicu VP, Noodleman L, Osinga VP, Patchkovskii S, Pavanello M, Philipsen PHT, Post D, Pye CC, Ravenek W, Rodríguez JI, Ros P, Schipper PRT, Schreckenbach G, Seldenthuis JS, Seth M, Snijders JG, Solà M, Swart M, Swerhone D, te Velde G, Vernooijs P, Versluis L, Visscher L, Visser O, Wang F, Wesolowski TA, van Wezenbeek EM, Wiesenekker G, Wolff SK, Woo TK, Yakovlev AL (2014) ADF: Amsterdam density functional SW. Holland, Amsterdam
  41. Guerra CF, Snijders JG, te Velde G, Baerends EJ (1998) Towards an order-N DFT method. Theor Chem Accounts 99:391-403
  42. Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree−Fock Møller−Plesset quadratic configuration interaction Density Functional Theory and semiempirical scale fac- tors. J Phys Chem 100:16502-16513 open in new tab
  43. Becke AD (1988) Density-functional exchange-energy approxima- tion with correct asymptotic behaviour. Phys Rev A 38:3098-3100 open in new tab
  44. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B: Condens Matter 37:785-789 open in new tab
  45. Grimme SJ (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Comput Chem 27:1787-1799 open in new tab
  46. Grimme S, Anthony J, Schwabe T, Mück-Lichtenfeld C (2007) Density functional theory with dispersion corrections for supramo- lecular structures aggregates and complexes of (bio)organic mole- cules. Org Biomol Chem 5:741-758 open in new tab
  47. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19-32 open in new tab
  48. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer Ver 3.1. University of Western Australia
  49. Mielcarek A, Daszkiewicz M, Kazimierczuk K, Ciborska A, Dołęga A (2016) Variable-temperature X-ray diffraction study of structural parameters of NH-S hydrogen bonds in triethylammonium and pyridinium silanethiolates. Acta Crystallogr Sect B Struct Sci 72:763-770 open in new tab
  50. Cohen MD (1968) Topochemistry. Part XXVIII. The system: 4- chloro-N-salicylideneaniline-4-bromo-N-salicylideneaniline. J Chem Soc B 0:373-376 open in new tab
  51. Blagus A, Cinčić D, Friščić T, Kaitner B, Stilinović V (2010) Schiff bases derived from hydroxyaryl aldehydes: molecular and crystal structure tautomerism quinoid effect coordination compounds. Maced J Chem Chem Eng 29:117-138 open in new tab
  52. Samuel B, Snaith R, Summerford C, Wade K (1970) Azomethine derivatives part XIII Azomethine stretching frequencies of some di- and tri-substituted methyleneamines their hydrochlorides and their boron trifluoride adducts. J Chem Soc A:2019-2022 open in new tab
  53. Pyta K, Przybylski P, Huczyński A, Hoser A, Woźniak K, Schilf W, Kamieński B, Grech E, Brzezinski B (2010) X-ray spectroscopic and computational studies of the tautomeric structure of a new hydrazone of 5-nitrosalicylaldehyde with indole-3-acetic hydrazide. J Mol Struct 970:147-154 open in new tab
  54. Brzezinski B, Zundel G (1982) Electronic structure of molecules and infrared continua caused by intramolecular hydrogen bonds with great proton polarizability. J Phys Chem 86:5133-5135 open in new tab
  55. Zundel G, Brzeziński B (1998) Hydrogen-bonded chains with large proton polarizability due to collective proton motion-pathways for protons in biological membranes. Pol J Chem 72:172-192 open in new tab
  56. Baranowska K, Piwowarska N, Herman A, Dołęga A (2012) Imidazolium silanethiolates relevant to the active site of cysteine proteases. Cooperative effect in a chain of NH+-S− hydrogen bonds. New J Chem 36:1574-1582 open in new tab
  57. Kazimierczuk K, Dołęga A, Wierzbicka J (2016) Proton transfer and hydrogen bonds in supramolecular, self-assembled structures of imidazolium silanethiolates. X-ray, spectroscopic and theoretical studies. Polyhedron 115:9-16 open in new tab
  58. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Interrelation between H-bond and pi-electron delocalization. Chem Rev 105:3513-3560 open in new tab
  59. Szatyłowicz H (2008) Structural aspects of the intermolecular hy- drogen bond strength: H-bonded complexes of aniline, phenol and pyridine derivatives. J Phys Org Chem 21:897-914 open in new tab
  60. Mahmudov KT, Pombeiro AJL (2016) Resonance-assisted hydro- gen bonding as a driving force in synthesis and a synthon in the design of materials. Chem Eur J 22:16356-16398 open in new tab
  61. Islam M, Razzak M, Karim M, Mirza AH (2017) H-bond plays key role in the synthesis of stable hemiaminals. Tetrahedron Lett 58: 1429-1432 open in new tab
Verified by:
Gdańsk University of Technology

seen 118 times

Recommended for you

Meta Tags