Versatility of putative aromatic aminotransferases from Candida albicans. - Publication - Bridge of Knowledge

Search

Versatility of putative aromatic aminotransferases from Candida albicans.

Abstract

Amino acids constitute the key sources of nitrogen for growth of Candida albicans. In order to survive inside the host in different and rapidly changing environments, this fungus must be able to adapt via its expression of genes for amino acid metabolism. We analysed the ARO8, ARO9, YER152C, and BNA3 genes with regards to their role in the nutritional flexibility of C. albicans. CaAro8p is undoubtedly the most versatile enzyme among the aminotransferases investigated. It is involved in the catabolism of histidine, lysine, and aromatic amino acids as well as in L-Lys, Phe and Tyr biosynthesis. CaAro9p participates in the catabolism of aromatic amino acids and lysine at high concentrations of these compounds, with no biosynthetic role. Conversely, the CaYer152Cp catalytic potential for aromatic amino acid catabolism observed in vitro appears to be of little importance in vivo. Neither biosynthetic nor catabolic roles of CaBan3p were observed for any proteinogenic amino acid. Finally, none of the analysed aminotransferases was solely responsible for the catabolism of a single particular amino acid or its biosynthesis.

Citations

  • 9

    CrossRef

  • 8

    Web of Science

  • 9

    Scopus

Cite as

Full text

download paper
downloaded 18 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
FUNGAL GENETICS AND BIOLOGY no. 110, pages 26 - 37,
ISSN: 1087-1845
Language:
English
Publication year:
2018
Bibliographic description:
Rząd K., Milewski S., Gabriel I.: Versatility of putative aromatic aminotransferases from Candida albicans.// FUNGAL GENETICS AND BIOLOGY. -Vol. 110, (2018), s.26-37
DOI:
Digital Object Identifier (open in new tab) 10.1016/j.fgb.2017.11.009
Bibliography: test
  1. Aoki, T., 1996. Antifungal azoxybacillin exhibits activity by inhibiting gene expression of sulfite reductase. Antimicrob. Agents Chemother. 40, 127-132. open in new tab
  2. Brock, M., 2009. Fungal metabolism in host niches. Curr. Opin. Microbiol. 12, 371-376. open in new tab
  3. Brunke, S., Seider, K., Almeida, R.S., Heyken, A., Fleck, C.B., Brock, M., Barz, D., Rupp, S., Hube, B., 2010. Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol. Microbiol. 76, 25-47. open in new tab
  4. Brunke, S., Seider, K., Richter, M.E., Bremer-Streck, S., Ramachandra, S., Kiehntopf, M., Brock, M., Hube, B., 2014. Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot. Cell 13, 758-765. open in new tab
  5. Bulfer, S.L., Brunzelle, J.S., Trievel, R.C., 2013. Crystal structure of Saccharomyces cere- visiae Aro8, a putative α-aminoadipate aminotransferase. Protein Sci. 22, 1417-1424. open in new tab
  6. Gabriel, I., Kur, K., Laforce-Nesbitt, S.S., Pulickal, A.S., Bliss, J.M., Milewski, S., 2014. Phenotypic consequences of LYS4 gene disruption in Candida albicans. Yeast 31, 299-308. open in new tab
  7. Gabriel, I., Milewski, S., 2016. Characterization of recombinant homocitrate synthase from Candida albicans. Protein Expr. Purif. 125, 7-18. open in new tab
  8. Gabriel, I., Vetter, N.D., Palmer, D.R., Milewska, M.J., Wojciechowski, M., Milewski, S., 2013. Homoisocitrate dehydrogenase from Candida albicans: properties, inhibition, and targeting by an antifungal pro-drug. FEMS Yeast Res. 13, 143-155. open in new tab
  9. Gilardi, G.L., 1965. Nutrition of systemic and subcutaneous pathogenic fungi. Bacteriol. Rev. 29, 406-424. open in new tab
  10. Gillum, A.M., Tsay, E.Y., Kirsch, D.R., 1984. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol. Gen. Genet. 198, 179-182. open in new tab
  11. Groll, A.H., Lumb, J., 2012. New developments in invasive fungal disease. Fut. Microbiol. 7, 179-184. open in new tab
  12. Hazelwood, L.A., Daran, J.M., van Maris, A.J., Pronk, J.T., Dickinson, J.R., 2008. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259-2266. open in new tab
  13. Hébert, A., Casaregola, S., Beckerich, J.-M., 2011. Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Res. 11, 366-378. open in new tab
  14. Iraqui, I., Vissers, S., Cartiaux, M., Urrestarazu, A., 1998. Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol. Gen. Genet. 257, 238-248. open in new tab
  15. Jastrzębowska, K., Gabriel, I., 2015. Inhibitors of amino acids biosynthesis as antifungal agents. Amino Acids 47, 227-249. open in new tab
  16. King, R.D., Rowland, J., Oliver, S.G., Young, M., Aubrey, W., Byrne, E., Liakata, M., Markham, M., Pir, P., Soldatova, L.N., Sparkes, A., Whelan, K.E., Clare, A., 2009. The automation of science. Science 5923, 85-89. open in new tab
  17. Kingsbury, J.M., Yang, Z., Ganous, T.M., Cox, G.M., McCusker, J.H., 2004. Novel chimeric spermidine synthase-saccharopine dehydrogenase gene (SPE3-LYS9) in the human pathogen Cryptococcus neoformans. Eukaryot. Cell 3, 752-763. open in new tab
  18. Kinzel, J.J., Winston, M.K., Bhattacharjee, J.K., 1983. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis. J. Bacteriol. 155, 417-419. open in new tab
  19. Kur, K., Gabriel, I., Morschhäuser, J., Barchiesi, F., Spreghini, E., Milewski, S., 2010. Disruption of homocitrate synthase genes in Candida albicans affects growth but not virulence. Mycopathologia 170, 397-402. open in new tab
  20. Large, P., 1986. Degradation of organic nitrogen compounds by yeasts. Yeast 2, 1-34. open in new tab
  21. Li, Y.F., Bao, W.G., 2007. Why do some yeast species require niacin for growth? Different modes of NAD synthesis. FEMS Yeast Res. 7, 657-664. open in new tab
  22. López-Martínez, R., 2010. Candidosis, a new challenge. Clin. Dermatol. 28, 178-184. open in new tab
  23. Martinez, P., Ljungdahl, P.O., 2005. Divergence of Stp1 and Stp2 transcription factors in Candida albicans places virulence factors required for proper nutrient acquisition under amino acid control. Mol. Cell. Biol. 25, 9435-9446. open in new tab
  24. Miceli, M.H., Díaz, J.A., Lee, S.A., 2011. Emerging opportunistic yeast infections. Lancet Infect. Dis. 11, 142-151. open in new tab
  25. Milewska, M.J., Prokop, M., Gabriel, I., Wojciechowski, M., Milewski, S., 2012. Antifungal activity of homoaconitate and homoisocitrate analogs. Molecules 17, 14022-14036. open in new tab
  26. Panozzo, C., Nawara, M., Suski, C., Kucharczyk, R., Skoneczny, M., Becam, A.M., Rytka, J., Herbert, C.J., 2002. Aerobic and anaerobic NAD+ metabolism in Saccharomyces cerevisiae. FEBS Lett. 517, 97-102. open in new tab
  27. Pirkov, I., Norbeck, J., Gustafsson, L., Albers, E., 2008. A complete inventory of all en- zymes in the eukaryotic methionine salvage pathway. FEBS J. 275, 4111-4120. open in new tab
  28. Preuss, J., Hort, W., Lang, S., Netsch, A., Rahlfs, S., Lochnit, G., Jortzik, E., Becker, K., Mayser, P.A., 2013. Characterization of tryptophan aminotransferase 1 of Malassezia furfur, the key enzyme in the production of indolic compounds by M. furfur. Exp. Dermatol. 22, 736-741. open in new tab
  29. Priest, S.J., Lorenz, M.C., 2015. Characterization of virulence-related phenotypes in Candida species of the CUG clade. Eukaryot. Cell 14, 931-940. open in new tab
  30. Reuss, O., Vik, A., Kolter, R., Morschhäuser, J., 2004. The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119-127.
  31. Rząd, K., Gabriel, I., 2015. Characterization of two aminotransferases from Candida al- bicans. Acta Biochim. Pol. 62, 903-912. open in new tab
  32. Sasse, C., Schillig, R., Dierolf, F., Weyler, M., Schneider, S., Mogavero, S., Rogers, D.P., Morschhäuser, J., 2011. The transcription factor Ndt80 does not contribute to Mrr1-, Tac1-, and Upc2-mediated fluconazole resistance in Candida albicans. PLoS ONE 9, e25623. open in new tab
  33. Schöbel, F., Jacobsen, I.D., Brock, M., 2010. Evaluation of lysine biosynthesis as an an- tifungal drug target: biochemical characterization of Aspergillus fumigatus homocitrate synthase and virulence studies. Eukaryot. Cell 9, 878-893. open in new tab
  34. Tan, I.K., Gajra, B., 2006. Plasma and urine amino acid profiles in a healthy adult po- pulation of Singapore. Ann. Acad. Med. Singap. 35, 468-475. open in new tab
  35. Urrestarazu, A., Vissers, S., Iraqui, I., Grenson, M., 1998. Phenylalanine-and tyrosine- auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol. Gen. Genet. 257, 230-237. open in new tab
  36. Wallach, D.P., 1961. Studies on the GABA pathway II. The lack of effect of pyridoxal phosphate on GABA-KGA transaminase inhibition induced by amino-oxyacetic acid. Biochem. Pharmacol. 8, 328-331. open in new tab
  37. Wogulis, M., Chew, E.R., Donohoue, P.D., Wilson, D.K., 2008. Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cer- evisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry 47, 1608-1621. open in new tab
  38. Xu, H., Andi, B., Qian, J., West, A.H., Cook, P.F., 2006. The α-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem. Biophys. 46, 43-64. open in new tab
  39. Yamaki, H., Yamaguchi, M., Imamura, H., Suzuki, H., Nishimura, T., Saito, H., Yamaguchi, H., 1990. The mechanism of antifungal action of (S)-2-amino-4-oxo-5- hydroxypentanoic acid, RI-331: the inhibition of homoserine dehydrogenase in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 168, 837-843. open in new tab
  40. Ye, Z.H., Garrad, R.C., Winston, M.K., Bhattacharjee, J.K., 1991. Use of alpha-aminoa- dipate and lysine as sole nitrogen source by Schizosaccharomyces pombe and selected pathogenic fungi. J. Basic Microbiol. 31, 149-156. open in new tab
Verified by:
Gdańsk University of Technology

seen 63 times

Recommended for you

Meta Tags