Voriconazole-Based Salts Are Active against Multidrug-Resistant Human Pathogenic Yeasts - Publication - Bridge of Knowledge

Search

Voriconazole-Based Salts Are Active against Multidrug-Resistant Human Pathogenic Yeasts

Abstract

Voriconazole (VOR) hydrochloride is unequivocally converted into VOR lactates and valinates upon reaction with silver salts of organic acids. This study found that the anticandidal in vitro activity of these compounds was comparable or slightly better than that of VOR. The Candida albicans clinical isolate overexpressing CaCDR1/CaCDR2 genes, highly resistant to VOR, was apparently more susceptible to VOR salts. On the other hand, the susceptibility of another C. albicans clinical isolate (demonstrating multidrug resistance due to the overexpression of CaMDR1) to VOR salts was comparable to that to VOR. Comparative studies on the influence of VOR and its salts on Rhodamine 6G efflux from susceptible and multidrug-resistant C. albicans cells revealed that VOR salts are poorer substrates for the CaCdr1p drug efflux pump than VOR.

Citations

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cite as

Full text

download paper
downloaded 15 times
Publication version
Accepted or Published Version
License
Creative Commons: CC-BY open in new tab

Keywords

Details

Category:
Articles
Type:
artykuły w czasopismach
Published in:
MOLECULES no. 24,
ISSN: 1420-3049
Language:
English
Publication year:
2019
Bibliographic description:
Szepiński E., Martynow D., Szweda P., Milewska M., Milewski S.: Voriconazole-Based Salts Are Active against Multidrug-Resistant Human Pathogenic Yeasts// MOLECULES -Vol. 24,iss. 20 (2019), s.3635-
DOI:
Digital Object Identifier (open in new tab) 10.3390/molecules24203635
Bibliography: test
  1. Fisher, M.C.; Hawkins, N.J.; Sanglard, D.; Gurr, N.J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 2018, 360, 739-742. [CrossRef] [PubMed] open in new tab
  2. Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol. 2017, 133, 86-96. [CrossRef] [PubMed] open in new tab
  3. Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today (Barc) 2015, 51, 705-718. [PubMed] open in new tab
  4. Thompson, G.R.; Lewis, J.S. Pharmacology and clinical use of voriconazole. Expert Opin. Drug Metab. Toxicol. 2010, 6, 83-94. [CrossRef] [PubMed] open in new tab
  5. Wiederhold, N.P.; Patterson, T.F. Emergence of azole resistance in Aspergillus. Semin. Respir. Crit. Care Med. 2015, 36, 673-680. [CrossRef] [PubMed] open in new tab
  6. Wakieć, R.; Prasad, R.; Morschhäuser, J.; Barchiesi, F.; Borowski, E.; Milewski, S. Voriconazole and multidrug resistance in Candida albicans. Mycoses 2007, 50, 109-115. open in new tab
  7. Mangrule, V.; Pore, Y.; Disouza, J. Synthesis and physicochemical studies of fluconazole ionic liquids. J. Appl. Pharm. Sci. 2017, 7, 84-89. open in new tab
  8. Keramatnia, F.; Jouyban, A.; Valizadeh, H.; Delazar, A. Ketoconazole ionic liquids with citric and tartaric acid: Synthesis, characterization and solubility study. Fluid Phase Equilib. 2016, 425, 108-113. [CrossRef] open in new tab
  9. Pernak, J.; Markiewicz, B.; Łęgosz, B.; Walkiewicz, F.; Gwiazdowski, R.; Praczyk, T. Known triazole fungicides-A new trick. RSC Adv. 2015, 5, 9695-9702. [CrossRef] open in new tab
  10. Hartmann, D.O.; Petkovic, M.; Silva Pereira, C. Ionic liquids as unforeseen assets to fight life-threatening mycotic diseases. Front. Microbiol. 2016, 7, e111. open in new tab
  11. Kalinowska-Lis, U.; Felczak, A.; Chęcińska, L.; Zawadzka, K.; Patyna, E.; Lisowska, K.; Ochocki, J. Synthesis, characterization and antimicrobial activity of water-soluble silver(I) complexes of metronidazole drug and selected counter-ions. Dalton Trans. 2015, 44, 8178-8189. [CrossRef] [PubMed] open in new tab
  12. Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M.H.; Santos, M.M.; Marrucho, I.M.; Rebelo, L.P.; Prudêncio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.C. Antitumor activity of ionic liquids based on ampicillin. ChemMedChem 2015, 10, 1480-1483. [CrossRef] [PubMed] open in new tab
  13. Clinical Laboratory Standards Institute (2008). M27-A3: Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-2rd ed.; CLSI: Wayne, PA, USA, 2008. open in new tab
  14. Franz, R.; Kelly, S.L.; Lamb, D.C.; Kelly, D.E.; Ruhnke, M.; Morschhäuser, J. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob. Agents Chemother. 1998, 42, 3065-3072. [CrossRef] [PubMed] open in new tab
  15. Kołaczkowski, M.; van der Rest, M.; Cebularz-Kołaczkowska, A.; Soumillion, J.P.; Konings, W.N.; Goffeau, A. Anticancer drugs, ionophoric peptides, and steroids as substrates of yeast multidrug transporter Pdr5. J. Biol. Chem. 1996, 271, 31543-31548. [CrossRef] [PubMed] open in new tab
  16. Puri, N.; Prakash, O.; Manoharlal, R.; Sharma, M.; Ghosh, I.; Prasad, R. Analysis of physico-chemical properties of substrates of ABC and MFS multidrug transporters of pathogenic Candida albicans. Eur. J. Med. Chem. 2010, 45, 4813-4826. [CrossRef] [PubMed] open in new tab
  17. Simons, C.; van Leeuwen, J.G.E.; Stemmer, R.; Arends, I.W.C.E.; Maschmeyer, T.; Sheldon, R.A.; Hanefeld, U. Enzyme-catalysed deprotection of N-acetyl and N-formyl amino acids. J. Mol. Catal. B Enzym. 2008, 54, 67-71. [CrossRef] open in new tab
  18. Nakamura, K.; Niimi, M.; Niimi, K.; Holmes, A.R.; Yates, J.E.; Decottignies, A.; Monk, B.C.; Goffeau, A.; Cannon, R.D. Functional expression of Candida albicans drug efflux pump Cdr1p in Saccharomyces cerevisiae strain deficient in membrane transporters. Antimicrob. Agents Chemother. 2001, 45, 3366-3374. [CrossRef] [PubMed] open in new tab
Verified by:
Gdańsk University of Technology

seen 114 times

Recommended for you

Meta Tags