Why is the cubic structure preferred in newly formed ice? - Publication - Bridge of Knowledge

Search

Why is the cubic structure preferred in newly formed ice?

Abstract

Molecular dynamics was employed to explain the preference for the cubic structure in newly formed crystals of ice. The results showed that in supercooled liquid water the molecules connected by hydrogen bonds are more likely to adopt relative orientations similar to the ones characteristic for cubic ice. The observed preference for certain relative orientations of molecules in the hydrogen-bonded pairs results in the higher probability of the formation of ice with the cubic structure. On that basis, it was concluded that the main reason for the increased probability of the formation of cubic ice in solidifying water is the distinctive structure of liquid water.

Citations

  • 7

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cite as

Full text

download paper
downloaded 27 times
Publication version
Accepted or Published Version
License
Copyright (the Owner Societies 2019)

Keywords

Details

Category:
Articles
Type:
artykuł w czasopiśmie wyróżnionym w JCR
Published in:
PHYSICAL CHEMISTRY CHEMICAL PHYSICS no. 21, pages 18043 - 18047,
ISSN: 1463-9076
Language:
English
Publication year:
2019
Bibliographic description:
Grabowska J.: Why is the cubic structure preferred in newly formed ice?// PHYSICAL CHEMISTRY CHEMICAL PHYSICS. -Vol. 21, iss. 33 (2019), s.18043-18047
DOI:
Digital Object Identifier (open in new tab) 10.1039/c9cp03705e
Bibliography: test
  1. of: Grabowska J.: Why is the cubic structure preferred in the newly formed ice? Physical Chemistry Chemical Physics. Vol. 21 (2019), p. 18043-18047. DOI: 10.1039/C9CP03705E Notes and References open in new tab
  2. H. Tanaka and I. Okabe, Chem. Phys. Lett., 1996, 259, 593-598. open in new tab
  3. T. L. Malkin, B. J. Murray, A. V Brukhno, J. Anwar and C. G. Salzmann, Proc. Natl. Acad. Sci., 2012, 109, 4020-4020. open in new tab
  4. T. L. Malkin, B. J. Murray, C. G. Salzmann, V. Molinero, S. J. Pickering and T. F. Whale, Phys. Chem. Chem. Phys., 2015, 17, 60-76. open in new tab
  5. B. J. Murray and A. K. Bertram, Phys. Chem. Chem. Phys., 2006, 8, 186-192. open in new tab
  6. A. J. Amaya, H. Pathak, V. P. Modak, H. Laksmono, N. D. Loh, J. A. Sellberg, R. G. Sierra, T. A. McQueen, M. J. Hayes, G. J. Williams, M. Messerschmidt, S. Boutet, M. J. Bogan, A. Nilsson, C. A. Stan and B. E. Wyslouzil, J. Phys. Chem. Lett., 2017, 8, 3216 -3222. open in new tab
  7. M. A. Carignano, P. B. Shepson and I. Szleifer, Mol. Phys., 2005, 103, 2957-2967. open in new tab
  8. M. A. Carignano, J. Phys. Chem. C, 2007, 111, 501-504. open in new tab
  9. E. B. Moore and V. Molinero, Phys. Chem. Chem. Phys., 2011, 13, 20008. open in new tab
  10. T. Li, D. Donadio, G. Russo and G. Galli, Phys. Chem. Chem. Phys., 2011, 13, 19807. open in new tab
  11. J. Benet, L. G. MacDowell and E. Sanz, Phys. Chem. Chem. Phys., 2014, 16 , 22159-66. open in new tab
  12. A. Hudait, S. Qiu, L. Lupi and V. Molinero, Phys. Chem. Chem. Phys., 2016, 18, 9544 -9553. open in new tab
  13. G. P. Johari, J. Chem. Phys., 2005, 122, 194504. open in new tab
  14. M. Seo, E. Jang, K. Kim, S. Choi and J. S. Kim, J. Chem. Phys., 2012, 137, 154503. open in new tab
  15. J. C. Johnston and V. Molinero, J. Am. Chem. Soc., 2012, 134, 6650-6659. open in new tab
  16. L. Lupi, A. Hudait, B. Peters, M. Grünwald, R. Gotchy Mullen, A. H. Nguyen and V. Molinero, Nature, 2017, 551, 218-222. open in new tab
  17. A. Zaragoza, M. M. Conde, J. R. Espinosa, C. Valeriani, C. Vega and E. Sanz, J. Chem. Phys., 2015, 143, 134504. open in new tab
  18. A. Haji-Akbari and P. G. Debenedetti, Proc. Natl. Acad. Sci., 2015, 112, 10582-10588. open in new tab
  19. J. Grabowska, A. Kuffel and J. Zielkiewicz, J. Chem. Phys., 2017, 147, 174502. open in new tab
  20. J. Grabowska, A. Kuffel and J. Zielkiewicz, Phys. Chem. Chem. Phys., 2018, 20, 25365- 25376. open in new tab
  21. S. Choi, E. Jang and J. S. Kim, J. Chem. Phys., 2014, 140, 014701. open in new tab
  22. D. A. Case, T. A. Darden, T. E. Cheatham III, C. L. Simmerling, J. Wang et al., Amber 12. Reference Manual, University of California, San Francisco, 2012. open in new tab
  23. J. L. F. Abascal, E. Sanz, R. García Fernández and C. Vega, J. Chem. Phys., 2005, 122, 234511. open in new tab
  24. A. H. Nguyen and V. Molinero, J. Phys. Chem. B, 2015, 119, 9369-9376. open in new tab
Sources of funding:
Verified by:
Gdańsk University of Technology

seen 107 times

Recommended for you

Meta Tags