Didn't find any results in this catalog!
But we have some results in other catalogs.Search results for: ENSEMBLE
-
Ensemble Classifier for Mining Data Streams
Publication -
Electrochemistry from first-principles in the grand canonical ensemble
PublicationProgress in electrochemical technologies, such as automotive batteries, supercapacitors, and fuel cells, depends greatly on developing improved charged interfaces between electrodes and electrolytes. The rational development of such interfaces can benefit from the atomistic understanding of the materials involved by first-principles quantum mechanical simulations with Density Functional Theory (DFT). However, such simulations are...
-
EBE: elastic blob ensemble for coarse human tracking
PublicationProponujemy nowy probabilistyczny algorytm śledzenia oparty na elastycznym zespole kropelkowym (EBE), który ma zastosowanie przy śledzeniu obiektów elastycznych. Wynikiem jest wskazówka nt. zgrubnego ruchu w postaci lokalizacji i orientacji obiektu wraz z lokalizacją kropelki. Głównym założeniem jest to, że orientacja całego obiektu nie zmienia się znacznie między sąsiednimi klatkami. Dyskretna przestrzeń rozwiązań jest tworzona...
-
Agent-Based Data Reduction Using Ensemble Technique
Publication -
Estimation of a Stochastic Burgers' Equation Using an Ensemble Kalman Filter
PublicationIn this work, we consider a difficult problem of state estimation of nonlinear stochastic partial differential equations (SPDE) based on uncertain measurements. The presented solution uses the method of lines (MoL), which allows us to discretize a stochastic partial differential equation in a spatial dimension and represent it as a system of coupled continuous-time ordinary stochastic differential equations (SDE). For such a system...
-
Divide and not forget: Ensemble of selectively trained experts in Continual Learning
PublicationClass-incremental learning is becoming more popular as it helps models widen their applicability while not forgetting what they already know. A trend in this area is to use a mixture-of-expert technique, where different models work together to solve the task. However, the experts are usually trained all at once using whole task data, which makes them all prone to forgetting and increasing computational burden. To address this limitation,...
-
The detection of Alternaria solani infection on tomatoes using ensemble learning
Publication -
SMOTE-Based Homogeneous Ensemble Methods for Software Defect Prediction
Publication -
Ensemble-Based Logistic Model Trees for Website Phishing Detection
Publication -
Heterogeneous Ensemble with Combined Dimensionality Reduction for Social Spam Detection
Publication