Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 1574
-
Catalog
- Publications 1224 available results
- Journals 162 available results
- Conferences 9 available results
- Publishing Houses 1 available results
- People 46 available results
- Projects 6 available results
- e-Learning Courses 29 available results
- Events 9 available results
- Open Research Data 88 available results
displaying 1000 best results Help
Search results for: GLOBAL EDGE ALLIANCE
-
Global edge alliances in graphs
PublicationIn the paper we introduce and study a new problem of finding a minimum global edge alliance in a graph which is related to the global defensive alliance (Haynes et al., 2013; Hedetniemi, 2004) and the global defensive set (Lewoń et al., 2016). We proved the NP-completeness of the global edge alliance problem for subcubic graphs and we constructed polynomial time algorithms for trees. We found the exact values of the size of the...
-
Tight bounds on global edge and complete alliances in trees
PublicationIn the talk the authors present some tight upper bounds on global edge alliance number and global complete alliance number of trees. Moreover, we present our NP-completeness results from [8] for global edge alliances and global complete alliances on subcubic bipartite graphs without pendant vertices. We discuss also polynomial time exact algorithms for finding the minimum global edge alliance on trees [7] and complete alliance...
-
Global defensive secure structures
PublicationLet S ⊂ V (G) for a given simple non-empty graph G. We define for any nonempty subset X of S the predicate SECG,S(X) = true iff |NG[X]∩S| ≥ |NG[X]\S|. Let H be a non-empty family of graphs such that for each vertex v ∈ V (G) there is a subgraph H of G containing v and isomorphic to a member of H. We introduce the concept of H-alliance extending the concept of global defensive secure structures. By an H-alliance in a graph G we...
-
Justyna Szostak dr inż.
PeopleI Gdańsk University of Technology: Chair of the Rector’s Internationalization Committee (October 2020 - Present) Erasmus + Coordinator for students and staff members, Faculty of Applied Physics and Mathematics (Mar 2017 - Present) Dean's Proxy for Internationalization, Faculty of Applied Physics and Mathematics (October 2020 - Present) Coordinator of the International Relations Office of the Faculty of Applied Physics and...
-
Modele i algorytmy dla grafowych struktur defensywnych
PublicationW niniejszej pracy przeprowadzono analizę złożoności istnienia struktur defensywnych oraz równowag strategicznych w grafach. W przypadku struktur defensywnych badano modele koalicji defensywnych, zbiorów defensywnych i koalicji krawędziowych – każdy z nich w wersji globalnej, tj. z wymogiem dominacji całego grafu. W przypadku modeli równowagi strategicznej badano równowagę strategiczną koalicji defensywnych, równowagę strategiczną...
-
Global defensive sets in graphs
PublicationIn the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC ( X ) = true if and only if | N [ X ] ∩ S | ≥ | N [ X ] \ S | holds, where N [ X ] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for...
-
Leading Edge
Journals -
Edge subdivision and edge multisubdivision versus some domination related parameters in generalized corona graphs
PublicationGiven a graph G= (V, E), the subdivision of an edge e=uv∈E(G) means the substitution of the edge e by a vertex x and the new edges ux and xv. The domination subdivision number of a graph G is the minimum number of edges of G which must be subdivided (where each edge can be subdivided at most once) in order to increase the domination number. Also, the domination multisubdivision number of G is the minimum number of subdivisions...
-
Optimal edge-coloring with edge rate constraints
PublicationWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
Edge-coloring of 3-uniform hypergraphs
PublicationWe consider edge-colorings of 3-uniform hypergraphs which is a natural generalization of the problem of edge-colorings of graphs. Various classes of hypergraphs are discussed and we make some initial steps to establish the border between polynomial and NP-complete cases. Unfortunately, the problem appears to be computationally difficult even for relatively simple classes of hypergraphs.