Didn't find any results in this catalog!
But we have some results in other catalogs.Search results for: NITROGEN-DOPED GRAPHENE QUANTUM DOTS
-
A magnetic imprinted polymer nano-adsorbent with embedded quantum dots and mesoporous carbon for the microextraction of triazine herbicides
PublicationA magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@NGQDs@ Fe3O4–NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding...
-
N-doped graphene quantum dot-decorated MOF-derived yolk-shell ZnO/NiO hybrids to boost lithium and sodium ion battery performance
PublicationSurface engineering at the nanoscale to obtain robust interface between metal oxides and quantum dots is essential for improving the performance and stability of battery materials. Herein, we designed and prepared novel N-doped graphene quantum dot-modified ZnO/NiO anode materials with a well-defined yolk-shell structure for lithium and sodium-ion batteries. NG QDs were assembled on the ZnO/NiO microspheres using three different...
-
Fabrication of anti-corrosion nitrogen doped graphene oxide coatings by electrophoretic deposition
PublicationThis work assesses anti-corrosion properties of graphene and N-doped graphene coatings deposited on copper by an electrophoretic method. Graphene oxide (GO) precursor was synthesized by an improved Hummers' method, whereas N-doping was performed hydrothermally in the presence of ammonia. After nitrogenation, doped graphene oxide samples (NGO) contained a reduced amount of oxygen and about 9% w/w nitrogen as pyridinic, pyrrole,...
-
Stannates, titanates and tantalates modified with carbon and graphene quantum dots for enhancement of visible-light photocatalytic activity
PublicationMost efforts in heterogeneous photocatalysis are focused on development of new and stable photoactive materials efficient in degradation of various pollutants under visible-light irradiation. In this regard, the wide-bandgap perovskite semiconductors, i.e., SrTiO3 (titanate), SrSnO3 (stannate) and AgTaO3 (tantalate), were prepared by a solvothermal method, and then modified with carbon quantum dots (CQDs) or graphene quantum dots...
-
Urchin-like TiO2 structures decorated with lanthanide-doped Bi2S3 quantum dots to boost hydrogen photogeneration performance
PublicationThe formation of heterojunctions between wide- and narrow-bandgap photocatalysts is commonly employed to boost the efficiency of photocatalytic hydrogen generation. Herein, the photoactivity of urchin-like rutile particles is increased by decorating with pristine as well as Er- or Yb-doped Bi2S3 quantum dots (QDs) at varied QD loadings (1–20 wt%) and doping degrees (1–15 mol%), and the best hydrogen evolution performance is achieved at...
-
Quantum dots in gas sensing a review
PublicationAir pollution becomes an increasing problem in the recent years. There is a need to develop more sensitive gas sensors. Much effort has been performed to develop different types of gas sensors, such as electrochemical sensors or polymer sensors. One of the most promising approaches to improve sensors performance is the application of the nanostructures as sensing materials. State of the art of quantum...
-
Electrochemical determination of neurotransmitter serotonin using boron/nitrogen co-doped diamond-graphene nanowall-structured particles
PublicationElectrode fouling is a major issue in biological detection due to the adhesion of the protein itself and polymerization of biomolecules on the electrode surface, impeding the electron transfer ability and decreasing the current response. To overcome this issue, the use of anti-fouling material, especially boron-doped diamond (BDD) electrode, is an alternative way. However, the electrocatalytic activity of BDD is inadequate compared...
-
Natural carbon-based quantum dots and their applications in drug delivery: A review
PublicationNatural carbon based quantum dots (NCDs) are an emerging class of nanomaterials in the carbon family. NCDs have gained immense acclamation among researchers because of their abundance, eco-friendly nature, aqueous solubility, the diverse functionality and biocompatibility when compared to other conventional carbon quantum dots (CDs).The presence of different functional groups on the surface of NCDs such as thiol, carboxyl, hydroxyl,...
-
Applying of Doped Graphene Oxide Coatings for Corrosion Prevention
PublicationINTRODUCTION Graphene is a carbonaceous material characterized by extraordinary properties (high electron mobility, high surface area, high mechanical strength of 1100 GPa, very dense network hindering the passage of even the smallest helium atoms) [1]. Therefore, it found many applications, also as an anti-corrosive layer [2]. Electrophoretic Deposition (EPD) is one of the methods to deposit coatings. However, due to slight solubility...
-
Remarkable visible-light induced hydrogen generation with ZnIn2S4 microspheres/CuInS2 quantum dots photocatalytic system
PublicationA new and active material in the form of ZnIn2S4 microspheres decorated by CuInS2 quantum dots have been obtained by hydrothermal method for the first time. The optimum amount of CuInS2 quantum dots (1.13 wt.%) introduced into rection medium during ZnIn2S4 microspheres synthesis increased the photocatalytic H2 generation rate by 2.5 times than that of bare ZnIn2S4 photocatalysis under visible light irradiation. This sample exhibited...