Didn't find any results in this catalog!
But we have some results in other catalogs.displaying 1000 best results Help
Search results for: PHANTOMS MIMICKING TISSUE
-
Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering
PublicationWe present an alternative to the conventional approach, phantoms without scattering nanoparticles, where scattering is achieved by the material itself: spherical cavities trapped in a silicone matrix. We describe the properties and fabrication of novel optical phantoms based on a silicone elastomer polydimethylsiloxane (PDMS) and glycerol mixture. Optical properties (absorption coefficient µa, reduced scattering coefficient µs',...
-
Porous Phantoms Mimicking Tissues—Investigation of Optical Parameters Stability Over Time
PublicationOptical phantoms are used to validate optical measurement methods. The stability of their optical parameters over time allows them to be used and stored over long-term periods, while maintaining their optical parameters. The aim of the presented research was to investigate the stability of fabricated porous phantoms, which can be used as a lung phantom in optical system. Measurements were performed in multiple series with an interval...
-
Porous Phantoms Mimicking Tissues – Investigation of Optical Parameter Stability Over Time
PublicationIn terms of optical parameters, optical phantoms can now replace live tissues and be used to validate optical measurement methods. Therefore, whether these parameters would be maintained after storage for 6 months was examined. The absorption and scattering coefficients were obtained from the measured transmittance and reflectance measurements taken 6 months apart and then compared. All of the measurements were conducted using...
-
Full scattering profile of circular optical phantoms mimicking biological tissue
PublicationHuman tissue is one of the most complex optical media since it is turbid and nonhomogeneous. In our poster, we suggest a new type of skin phantom and an optical method for sensing physiological tissue condition, basing on the collection of the ejected light at all exit angles, to receive the full scattering profile. Conducted experiments were carried out on an unique set-up for noninvasive encircled measurement. Set-up consisted...
-
Optical Parameters Stability Over Time of Porous Phantoms Mimicking Tissues
Open Research DataOptical phantoms are used to validate optical measurement methods. The stability of their optical parameters over time allows them to be used and stored over long-term periods while maintaining their optical parameters. The aim of the presented research was to investigate the stability of fabricated porous phantoms, which can be used as a lung phantom...
-
Measurements of fundamental properties of homogeneous tissue phantoms
PublicationWe present the optical measurement techniques used in human skin phantom studies. Their accuracy and the sources of errors in microscopic parameters’ estimation of the produced phantoms are described. We have produced optical phantoms for the purpose of simulating human skin tissue at the wavelength of 930 nm. Optical coherence tomography was used to measure the thickness and surface roughness and to detect the internal inhomogeneities....
-
Multi-layered tissue head phantoms for noninvasive optical diagnostics
PublicationExtensive research in the area of optical sensing for medical diagnostics requires development of tissue phantoms with optical properties similar to those of living human tissues. Development and improvement of in vivo optical measurement systems requires the use of stable tissue phantoms with known characteristics, which are mainly used for calibration of such systems and testing their performance over time. Optical and mechanical...
-
Polyacrylamide‐based phantoms as tissue substitute in experimental radiation physics
Publication -
Nanodiamond phantoms mimicking human liver: perspective to calibration of T1 relaxation time in magnetic resonance imaging
PublicationPhantoms of biological tissues are materials that mimic the properties of real tissues. This study shows the development of phantoms with nanodiamond particles for calibration of T1 relaxation time in magnetic resonance imaging. Magnetic resonance imaging (MRI) is a commonly used and non-invasive method of detecting pathological changes inside the human body. Nevertheless, before a new MRI device is approved for use, it is necessary...
-
Colored Tattoo Ink Screening Method with Optical Tissue Phantoms and Raman Spectroscopy
PublicationDue to the increasing popularity of tattoos among the general population, to ensure their safety and quality, there is a need to develop reliable and rapid methods for the analysis of the composition of tattoo inks, both in the ink itself and in already existing tattoos. This paper presents the possibility of using Raman spectroscopy to examine tattoo inks in biological materials. We have developed optical tissue phantoms mimicking...