Search results for: PRE-TRAINED MODELS - Bridge of Knowledge

Search

Search results for: PRE-TRAINED MODELS
Przykład wyników znalezionych w innych katalogach

Search results for: PRE-TRAINED MODELS

  • Comparison of Language Models Trained on Written Texts and Speech Transcripts in the Context of Automatic Speech Recognition

    Publication
    • S. Dziadzio
    • A. Nabożny
    • A. Smywiński-Pohl
    • B. Ziółko

    - Year 2015

    Full text to download in external service

  • Training of Deep Learning Models Using Synthetic Datasets

    Publication

    - Year 2022

    In order to solve increasingly complex problems, the complexity of Deep Neural Networks also needs to be constantly increased, and therefore training such networks requires more and more data. Unfortunately, obtaining such massive real world training data to optimize neural networks parameters is a challenging and time-consuming task. To solve this problem, we propose an easy-touse and general approach to training deep learning...

    Full text to download in external service

  • MagMax: Leveraging Model Merging for Seamless Continual Learning

    Publication
    • D. Marczak
    • B. Twardowski
    • T. Trzciński
    • S. Cygert

    - Year 2024

    This paper introduces a continual learning approach named MagMax, which utilizes model merging to enable large pre-trained models to continuously learn from new data without forgetting previously acquired knowledge. Distinct from traditional continual learning methods that aim to reduce forgetting during task training, MagMax combines sequential fine-tuning with a maximum magnitude weight selection for effective knowledge integration...

    Full text to download in external service

  • Assessing the attractiveness of human face based on machine learning

    Publication

    The attractiveness of the face plays an important role in everyday life, especially in the modern world where social media and the Internet surround us. In this study, an attempt to assess the attractiveness of a face by machine learning is shown. Attractiveness is determined by three deep models whose sum of predictions is the final score. Two annotated datasets available in the literature are employed for training and testing...

    Full text available to download

  • Melanoma skin cancer detection using mask-RCNN with modified GRU model

    Publication

    - Frontiers in Physiology - Year 2024

    Introduction: Melanoma Skin Cancer (MSC) is a type of cancer in the human body; therefore, early disease diagnosis is essential for reducing the mortality rate. However, dermoscopic image analysis poses challenges due to factors such as color illumination, light reflections, and the varying sizes and shapes of lesions. To overcome these challenges, an automated framework is proposed in this manuscript. Methods: Initially, dermoscopic...

    Full text available to download

  • Justyna Signerska-Rynkowska dr inż.

    I am currently an assistant professor (adjunct) at Gdansk University of Technology (Department of Differential Equations and Mathematics Applications). My scientific interests include dynamical systems theory, chaos theory and their applications to modeling of biological phenomena, especially to neurosciences. In June 2013 I completed PhD in Mathematics at the Institute of Mathematics of Polish Academy of Sciences (IMPAN) (thesis...

  • A Mammography Data Management Application for Federated Learning

    Publication

    This study aimed to develop and assess an application designed to enhance the management of a local client database consisting of mammographic images with a focus on ensuring that images are suitably and uniformly prepared for federated learning applications. The application supports a comprehensive approach, starting with a versatile image-loading function that supports DICOM files from various medical imaging devices and settings....

    Full text to download in external service

  • News that Moves the Market: DSEX-News Dataset for Forecasting DSE Using BERT

    Publication

    - Year 2024

    Stock market is a complex and dynamic industry that has always presented challenges for stakeholders and investors due to its unpredictable nature. This unpredictability motivates the need for more accurate prediction models. Traditional prediction models have limitations in handling the dynamic nature of the stock market. Additionally, previous methods have used less relevant data, leading to suboptimal performance. This study...

    Full text to download in external service

  • Selection of an artificial pre-training neural network for the classification of inland vessels based on their images

    Publication

    - Zeszyty Naukowe Akademii Morskiej w Szczecinie - Year 2021

    Artificial neural networks (ANN) are the most commonly used algorithms for image classification problems. An image classifier takes an image or video as input and classifies it into one of the possible categories that it was trained to identify. They are applied in various areas such as security, defense, healthcare, biology, forensics, communication, etc. There is no need to create one’s own ANN because there are several pre-trained...

    Full text available to download

  • Deep Instance Segmentation of Laboratory Animals in Thermal Images

    In this paper we focus on the role of deep instance segmentation of laboratory rodents in thermal images. Thermal imaging is very suitable to observe the behaviour of laboratory animals, especially in low light conditions. It is an non-intrusive method allowing to monitor the activity of animals and potentially observe some physiological changes expressed in dynamic thermal patterns. The analysis of the recorded sequence of thermal...

    Full text available to download