Didn't find any results in this catalog!
But we have some results in other catalogs.Filters
total: 2823
displaying 1000 best results Help
Search results for: sparse autoregressive models
-
Sparse autoregressive modeling
PublicationIn the paper the comparison of the popular pitch determination (PD) algorithms for thepurpose of elimination of clicks from archive audio signals using sparse autoregressive (SAR)modeling is presented. The SAR signal representation has been widely used in code-excitedlinear prediction (CELP) systems. The appropriate construction of the SAR model is requiredto guarantee model stability. For this reason the signal representation...
-
RENOVATION OF ARCHIVE AUDIO RECORDINGS USING SPARSE AUTOREGRESSIVE MODELING AND BIDIRECTIONAL PROCESSING
PublicationThe paper presents a new approach to elimination of broadband noise and impulsive disturbances from archive audio recordings. The proposed adaptive Kalman-like algorithm, based on a sparse autoregressive model of the audio signal, simultaneously detects noise pulses, interpolates the irrevocably distorted samples and performs signal smoothing. It is shown that bidirectional (forward-backward) processing of the archive signal improves...
-
Elimination of clicks from archive speech signals using sparse autoregressive modeling
PublicationThis paper presents a new approach to elimination of impulsivedisturbances from archive speech signals. The proposedsparse autoregressive (SAR) signal representation is given ina factorized form - the model is a cascade of the so-called formantfilter and pitch filter. Such a technique has been widelyused in code-excited linear prediction (CELP) systems, as itguarantees model stability. After detection of noise pulses usinglinear...
-
Sparse vector autoregressive modeling of audio signals and its application to the elimination of impulsive disturbances
PublicationArchive audio files are often corrupted by impulsive disturbances, such as clicks, pops and record scratches. This paper presents a new method for elimination of impulsive disturbances from stereo audio signals. The proposed approach is based on a sparse vector autoregressive signal model, made up of two components: one taking care of short-term signal correlations, and the other one taking care of long-term correlations. The method...
-
Low order autoregressive (AR) models for FDTD analysis of microwave filters.
PublicationArtykuł opisuje zastosowanie modeli AR w celu poprawy efektywności analizy struktur filtrujących metodą różnic skończonych w dziedzinie czasu (FD-TD). Opisanych jest szereg kryteriów pozwalających na automatyczne tworzenie modeli AR sygnałów czasowych, w tym wybór fragmentu odpowiedzi układu stanowiący podstawę ekstrakcji współczynników modelu, współczynnika decymacji oraz rzędu modelu. Skuteczność wprowadzonych kryteriów...
-
A Cost-Effective Method for Reconstructing City-Building 3D Models from Sparse Lidar Point Clouds
PublicationThe recent popularization of airborne lidar scanners has provided a steady source of point cloud datasets containing the altitudes of bare earth surface and vegetation features as well as man-made structures. In contrast to terrestrial lidar, which produces dense point clouds of small areas, airborne laser sensors usually deliver sparse datasets that cover large municipalities. The latter are very useful in constructing digital...
-
Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics
PublicationDesign of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that...
-
Prognozowanie ostrzegawcze w małej firmie
PublicationW artykule pokazano możliwości zastosowania prostych metod prognostycznych do ostrzegania w małej firmie przed niekorzystnymi zjawiskami. Przedmiotem badań jest sprzedaż, a ze względu na występowanie w szeregu czasowym sezonowości, w celu wyznaczenia sygnałów ostrzegawczych dokonano porównań trendów prognozowanych i rzeczywistych w okresach jednoimiennych za pomocą pierwszych różnic. Do prognozowania sprzedaży wykorzystano proste...
-
Vident-synth: a synthetic intra-oral video dataset for optical flow estimation
Open Research DataWe introduce Vident-synth, a large dataset of synthetic dental videos with corresponding ground truth forward and backward optical flows and occlusion masks. It can be used for:
-
On Adaptive Spectrum Estimation of Multivariate Autoregressive Locally Stationary Processes
PublicationAutoregressive modeling is a widespread parametricspectrum estimation method. It is well known that, in the caseof stationary processes with unknown order, its accuracy canbe improved by averaging models of different complexity usingsuitably chosen weights. The paper proposes an extension of thistechnique to the case of multivariate locally stationary processes.The proposed solution is based on local autoregressive...