Filters
total: 1249
filtered: 189
Search results for: autism spectrum disorders
-
FTIR spectrum for biologically pre-treated lignocellulosic biomass
Open Research DataDataset contains FTIR spectrum data for lignocellulosic biomass obtained during the biological pretreatment period with the application of wild red, white and brown Rot Fungi.
-
The profiles and spectrum of aqua solution of tannic acid by HPLC-DAD-MS analysis.
Open Research DataThe profiling of tannic acid is determined by examining the content and proportion / ratio of gallotannins [Aras et al. 2016, Clifford et al. 2007, Gauri et al. 2012, Nishizawa et al. 1982]. In order to check the ion mass distribution (TIC) in an aqueous solution of commercial tannic acid, a direct sample injection (TA) was performed into the mass spectrometer....
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 240 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.4
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.5
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Absorption and fluorescence spectrum the Diamond™ nucleic acid dye applied to DNA and friction ridge analysis from fingerprint traces
Open Research DataThe results of a study of the spectroscopic properties of Diamond™ dye binding to reference DNA and to DNA from a fingerprint using a UV/VIs spectrophotometer and a spectrofluorimeter are presented.
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.2
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.1
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - microsphere inspection s.3
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated (100 nm) microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 100 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on protective foil using 2-wire probe 48h exposition
Open Research DataThe dataset presents impedance spectrum of anticorrosion foil (coating) protecting aluminium frame . This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on protective foil using 2-wire probe 24h exposition
Open Research DataThe dataset presents impedance spectrum of anticorrosion foil (coating) protecting aluminium frame . This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole...
-
Calibration images under different lighting conditions vol. 1
Open Research DataDataset description: Calibration images under different lighting conditions vol. 1
-
Testing HIADAC high impedance analyzer in Trento University laboratory on Baunier's RC model using 2 wire probe
Open Research DataThe dataset presents impedance spectrum of Baunier's RC model. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (1 mHz – 100 kHz) was selected in order to test the whole measureement range of the analyzer. In...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on "unknown" object using 2-wire probe
Open Research DataThe dataset presents impedance spectrum of "black-box" object with interesting phase characteristics. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (1 Hz – 100 kHz) was selected in order to test the whole measureement...
-
Testing HIADAC high impedance analyzer in Trento University laboratory on Baunier's RC model using 3 wire probe
Open Research DataThe dataset presents impedance spectrum of Baunier's RC model. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (1 mHz – 100 kHz) was selected in order to test the whole measureement range of the analyzer. In...
-
Testing impedance analyzer with potentiostat using RC model with Si diode at 200 mV
Open Research DataThe dataset presents impedance spectrum non-linear RC model with diode presented in the figure below. This model was used as a test engine of the impedance analyzer with potentiostat described in the referenced paper. When changing the DC polarisation of the model the non-linear phenomena could be observed. Thanks to this, the model can be used as a...
-
Testing impedance analyzer with potentiostat using RC model with Si diode at 0 V
Open Research DataThe dataset presents impedance spectrum non-linear RC model with diode presented in the figure below. This model was used as a test engine of the impedance analyzer with potentiostat described in the referenced paper. When changing the DC polarisation of the model the non-linear phenomena could be observed. Thanks to this, the model can be used as a...
-
Testing impedance analyzer with potentiostat using RC model with Si diode at 600 mV
Open Research DataThe dataset presents impedance spectrum non-linear RC model with diode presented in the figure below. This model was used as a test engine of the impedance analyzer with potentiostat described in the referenced paper. When changing the DC polarisation of the model the non-linear phenomena could be observed. Thanks to this, the model can be used as a...
-
Testing impedance analyzer with potentiostat using RC model with Si diode at 400 mV
Open Research DataThe dataset presents impedance spectrum non-linear RC model with diode presented in the figure below. This model was used as a test engine of the impedance analyzer with potentiostat described in the referenced paper. When changing the DC polarisation of the model the non-linear phenomena could be observed. Thanks to this, the model can be used as a...
-
Calibration images under different lighting conditions - static for feature localisation
Open Research DataDataset description: Calibration images under different lighting conditions - static mode for feature detection
-
Calibration images under different lighting conditions vol. 2
Open Research DataDataset description: Calibration images under different lighting conditions vol. 1
-
Testing HIADAC high impedance analyzer in cooperation with Road and Bridge Research Institute on nano-nickel based coating using 2-wire probe sample 1
Open Research DataThe dataset presents impedance spectrum of nano-nickel based coating sample 1. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole measureement range of...
-
Testing high impedance analyzer in the field on high-voltage line pylon cell 2 exposition 1
Open Research DataThe dataset presents impedance spectrum of anticorrosion coating on high-voltage line pylon presented in the figure below. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The dataset contains comparative measurements with Atlas-Sollich ATLAS98HI analyser....
-
Testing HIADAC high impedance analyzer in cooperation with Road and Bridge Research Institute on polyvinyl coating using 2-wire probe sample 2
Open Research DataThe dataset presents impedance spectrum of polyvinyl coating (code-name PW_2_2_1) sample 2. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole measureement...
-
Testing HIADAC high impedance analyzer in cooperation with Road and Bridge Research Institute on nano-nickel based coating using 2-wire probe sample 2
Open Research DataThe dataset presents impedance spectrum of nano-nickel based coating sample 2. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The impedance spectrum frequency range (0.1 Hz – 100 kHz) was selected in order to test the whole measureement range of...
-
Testing high impedance analyzer in the field on high-voltage line pylon cell 1 exposition 2
Open Research DataThe dataset presents impedance spectrum of anticorrosion coating on high-voltage line pylon presented in the figure below. This object was used to test high-impedance analyzer for diagnostic of anticorossion coatings (HIADAC) realized in the frame of Eureka project E!3174. The dataset contains comparative measurements with Atlas-Sollich ATLAS98HI analyser....