Filters
total: 640
filtered: 107
Search results for: interval graph coloring
-
Dataset of non-isomorphic graphs of the coloring types (K4,K4;n), 1<n<R(4,4)
Open Research DataFor K4 graph, a coloring type (K4,K4;n) is such an edge coloring of the full Kn graph, which does not have the K4 subgraph in the first color (representing by no edges in the graph) or the K4 subgraph in the second color (representing by edges in the graph).The Ramsey number R(4,4) is the smallest natural number n such that for any edge coloring of...
-
Dataset of non-isomorphic graphs of the coloring types (K3,Km;n), 2<m<7, 1<n<R(3,m)
Open Research DataFor K3 and Km graphs, a coloring type (K3,Km;n) is such an edge coloring of the full Kn graph, which does not have the K3 subgraph in the first color (representing by no edges in the graph) or the Km subgraph in the second color (representing by edges in the graph).The Ramsey number R(3,m) is the smallest natural number n such that for any edge coloring...
-
Dataset of non-isomorphic graphs of the coloring types (K3,Km-e;n), 2<m<7, 1<n<R(K3,Km-e).
Open Research DataFor K3 and Km-e graphs, a coloring type (K3,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K3 subgraph in the first color (representing by no edges in the graph) or the Km-e subgraph in the second color (representing by edges in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K3,Km-e)...
-
Dataset of non-isomorphic graphs of the coloring types (Km,K3-e;n), 4<m<8, 1<n<R(Km,K3-e)
Open Research DataFor Km and K3-e graphs, a coloring type (Km,K3-e;n) is such an edge coloring of the full Kn graph, which does not have the Km subgraph in the first color (representing by no edges in the graph) or the K3-e subgraph in the second color (representing by edges in the graph). K3-e means the full Km graph with one edge removed.The Ramsey number R(Km,K3-e)...
-
Dataset of non-isomorphic graphs of the coloring types (K4,Km-e;n), 2<m<5, 1<n<R(K4,Km-e)
Open Research DataFor K4 and Km-e graphs, a coloring type (K4,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K4 subgraph in the first color (representing by no edges in the graph) or the Km-e subgraph in the second color (representing by edges in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K4,Km-e)...
-
Dataset of non-isomorphic graphs being coloring types (K5-e,Km-e;n), 2<m<5, 1<n<R(K5-e,Km-e)
Open Research DataFor K5-e and Km-e graphs, the type coloring (K5-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K5-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K5-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K6-e,Km-e;n), 2<m<5, 1<n<R(K6-e,Km-e)
Open Research DataFor K6-e and Km-e graphs, the type coloring (K6-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K6-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed. The Ramsey number R(K6-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K3-e,Km-e;n), 2<m<8, 1<n<R(K3-e,Km-e)
Open Research DataFor K3-e and Km-e graphs, the type coloring (K3-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K3-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K3-e,Km-e) is the smallest...
-
Dataset of non-isomorphic graphs being coloring types (K4-e,Km-e;n), 2<m<7, 1<n<R(K4-e,Km-e)
Open Research DataFor K4-e and Km-e graphs, the type coloring (K4-e,Km-e;n) is such an edge coloring of the full Kn graph, which does not have the K4-e subgraph in the first color (no edge in the graph) or the Km-e subgraph in the second color (exists edge in the graph). Km-e means the full Km graph with one edge removed.The Ramsey number R(K4-e,Km-e) is the smallest...
-
Dynamics of S-unimodal maps used in population modeling.
Open Research DataS-unimodal maps are maps of the interval with negative Schwarzian derivative and having only one turning point (such that the map is increasing to the left of the turning point and decreasing to the right of it). Theory of S-unimodal maps is now a well-developed branch of discrete dynamical systems, including famous Singer theorem which implies existence...
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a large range of parameters
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a very small critical neighborhood
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using Johnson’s algorithm
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is positive
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, computing λ only
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “derivative” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the cubic map as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is positive
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the critical neighborhood size
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the “critical” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “uniform” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the partition size, using the Floyd–Warshall algorithm
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “critical” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, using the “derivative” partition type
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ0 is greater than 0.1
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=1.5 as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map as a function of the parameter, with a small critical neighborhood
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the unimodal map with γ=2.5 as a function of the parameter
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
Uniform expansion estimates in the quadratic map with the smallest critical neighborhood for which the expansion exponent λ is greater than 0.1
Open Research DataThis dataset contains selected results of numerical computations described in the paper "Quantitative hyperbolicity estimates in one-dimensional dynamics" by S. Day, H. Kokubu, S. Luzzatto, K. Mischaikow, H. Oka, P. Pilarczyk, published in Nonlinearity, Vol. 21, No. 9 (2008), 1967-1987, doi: 10.1088/0951-7715/21/9/002.
-
DK16 Mrągowo-Ełk 2017- video data
Open Research DataDK16 Mrągowo-Ełk 2017- video data
-
A collection of directed graphs for the minimum cycle mean weight computation
Open Research DataThis dataset contains definitions of the 16 directed graphs with weighted edges that were described in the following paper: Paweł Pilarczyk, A space-efficient algorithm for computing the minimum cycle mean in a directed graph, Journal of Mathematics and Computer Science, 20 (2020), no. 4, 349--355, DOI: 10.22436/jmcs.020.04.08, URL: http://dx.doi.org/10.22436/jmcs.020.04.08 These...
-
Conley-Morse graphs for a two-dimensional discrete neuron model (limited range)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Conley-Morse graphs for a two-dimensional discrete neuron model (full range)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Conley-Morse graphs for a two-dimensional discrete neuron model (low resolution)
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper “Topological-numerical analysis of a two-dimensional discrete neuron model” by Paweł Pilarczyk, Justyna Signerska-Rynkowska and Grzegorz Graff. A preprint of this paper is available at https://doi.org/10.48550/arXiv.2209.03443.
-
Conley-Morse graphs for a non-linear Leslie population model with 2 varying parameters
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...
-
Conley-Morse graphs for a non-linear Leslie population model with 3 varying parameters
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "A database schema for the analysis of global dynamics of multiparameter systems" by Z. Arai, W. Kalies, H. Kokubu, K. Mischaikow, H. Oka, P. Pilarczyk, published in SIAM Journal on Applied Dynamical Systems (SIADS),...
-
The values of Permutation Entropy for individuals with Normal Sinus Rhythm
Open Research DataThe dataset consists of calculated values of entropy of 75 000 intervals between consecutive heartbeats (RR intervals) for 54 patients with normal sinus rhythm (NSR). The original data were taken from PhysioNet Normal Sinus Rhythm RR Interval Database (cf. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P.C., Mark R., Mietus J.E., Moody G.B.,...
-
The values of Permutation Entropy for patients with Congestive Heart Failure
Open Research DataThe dataset consists of calculated values of entropy of 75 000 intervals between consecutive heartbeats (RR intervals) for 29 patients with congestive heart failure (CHF). The original data were taken from PhysioNet Congestive Heart Failure RR Interval Database (cf. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P.C., Mark R., Mietus J.E.,...
-
The values of Block Entropy for individuals with Normal Sinus Rhythm
Open Research DataThe dataset consists of calculated values of entropy of 75 000 intervals between consecutive heartbeats (RR intervals) for 54 patients with normal sinus rhythm (NSR). The original data were taken from PhysioNet Normal Sinus Rhythm RR Interval Database (cf. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P.C., Mark R., Mietus J.E., Moody G.B.,...
-
The values of Block Entropy for patients with Congestive Heart Failure
Open Research DataThe dataset consists of calculated values of entropy of 75 000 intervals between consecutive heartbeats (RR intervals) for 29 patients with congestive heart failure (CHF). The original data were taken from PhysioNet Congestive Heart Failure RR Interval Database (cf. Goldberger A., Amaral L., Glass L., Hausdorff J., Ivanov P.C., Mark R., Mietus J.E.,...
-
Conley-Morse graphs for a two-patch vaccination model
Open Research DataThis dataset contains selected results of rigorous numerical computations described in Section 5 of the paper "Rich bifurcation structure in a two-patch vaccination model" by D.H. Knipl, P. Pilarczyk, G. Röst, published in SIAM Journal on Applied Dynamical Systems (SIADS), Vol. 14, No. 2 (2015), pp. 980–1017, doi: 10.1137/140993934.
-
Conley-Morse graphs for a population model with harvesting. Case He-S1: Equal harvesting of juveniles and adults, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-Se: Harvesting juveniles only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case He-Se: Equal harvesting and equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Hj-S1: Harvesting juveniles only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Ha-S1: Harvesting adults only, survival rates of juveniles and adults add up to 1
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
Conley-Morse graphs for a population model with harvesting. Case Ha-Se: Harvesting adults only, equal survival rates of juveniles and adults
Open Research DataThis dataset contains selected results of rigorous numerical computations conducted in the framework of the research described in the paper "Global dynamics in a stage-structured discrete population model with harvesting" by E. Liz and P. Pilarczyk: Journal of Theoretical Biology, Vol. 297 (2012), pp. 148–165, doi: 10.1016/j.jtbi.2011.12.012.
-
CrN coating in ring-on-ring sliding with saline solution (0.9%) lubrication 5MPa, 0.1m/s specimn. #B21/#A21
Open Research DataWear tests in sliding friction of CrN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, CrN over CrN . Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: SALINE SOLUTION (0.9%). Tribometer: PT-3. Overall test time till coating penetration 25 min....
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#A47
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 20 min. The test...
-
TiN coating in ring-on-ring sliding with distlled water lubrication 5MPa, 0.1m/s specimn. #A45/#B45
Open Research DataWear tests in sliding friction of TiN coating on 1.4021 (EN 10088-1) heat treated stainless steel. Ring - on - ring contact in unidirectional sliding, TiN over TiN. Mean contact stress: 5MPa. Sliding velocity: 0,1 m/s. Mean friction radius: 9.5mm. Lubricant: DISTILLED WATER. Tribometer: PT-3. Overall test time till coating penetration 90 min. The test...