Filters
total: 16
Search results for: DISPERSION EQUATIONS
-
Multimode systems of nonlinear equations: derivation, integrability, and numerical solutions
PublicationWe consider the propagation of electromagnetic pulses in isotropic media taking a third-order nonlinearityinto account. We develop a method for transforming Maxwell's equations based on a complete set ofprojection operators corresponding to wave-dispersion branches (in a waveguide or in matter) with thepropagation direction taken into account. The most important result of applying the method is a systemof equations describing the...
-
Directed electromagnetic pulse dynamics: projecting operators method
PublicationIn this article, we consider a one-dimensional model of electromagnetic pulse propagation in isotropic media, takinginto account a nonlinearity of the third order. We introduce a method for Maxwell's equation transformation on thebasis of a complete set of projecting operators. The operators correspond to wave dispersion branches including thedirection of propagation. As the simplest result of applying the method, we derive a system...
-
Coupled nonlinear Schrödinger equations in optic fibers theory
PublicationIn this paper a detailed derivation and numerical solutions of CoupledNonlinear Schr¨odinger Equations for pulses of polarized electromagnetic wavesin cylindrical fibers has been reviewed. Our recent work has been compared withsome previous ones and the advantage of our new approach over other methods hasbeen assessed. The novelty of our approach lies is an attempt to proceed withoutloss of information within the frame of basic...
-
ADAPTIVE METHOD FOR THE SOLUTION OF 1D AND 2D ADVECTION-DIFFUSION EQUATIONS USED IN ENVIRONMENTAL ENGINEERING
PublicationThe paper concerns the numerical solution of one-dimensional (1D) and two-dimensional (2D) advection-diffusion equations. For the numerical solution of the 1D advection-diffusion equation a method, originally proposed for solution of the 1D pure advection equation, has been developed. A modified equation analysis carried out for the proposed method allowed increasing of the resulting solution accuracy and consequently, to reduce...
-
On dynamics of origami-inspired rod
PublicationWe discuss the dynamics of a relatively simple origami-inspired structure considering discrete and continuum models. The latter was derived as a certain limit of the discrete model. Here we analyze small in-plane deformations and related equations of infinitesimal motions. For both models, dispersion relations were derived and compared. The comparison of the dispersion relations showed that the continuum model can capture the behavior...
-
Ultrashort Opposite Directed Pulses Dynamics with Kerr Effect and Polarization Account
PublicationWe present the application of projection operator methods to solving the problem of the propagation and interaction of short optical pulses of different polarizations and directions in a nonlinear dispersive medium. We restrict ourselves by the caseof one-dimensional theory, taking into account material dispersion and Kerr nonlinearity. The construction of operators is delivered in two variants: for the Cauchy problem and for the...
-
Excitation of Non-Wave Modes by Sound of Arbitrary Frequency in a Chemically Reacting Gas
PublicationThe nonlinear phenomena in the field of high intensity sound propagating in a gas with a chemical reaction, are considered. A chemical reaction of A → B type is followed by dispersion and attenuation of sound which may be atypical during irreversible thermodynamic processes under some conditions. The first and second order derivatives of heat produced in the chemical reaction evaluated at the equilibrium temperature, density and...
-
Surface and interfacial anti-plane waves in micropolar solids with surface energy
PublicationIn this work, the propagation behaviour of a surface wave in a micropolar elastic half-space with surface strain and kinetic energies localized at the surface and the propagation behaviour of an interfacial anti-plane wave between two micropolar elastic half-spaces with interfacial strain and kinetic energies localized at the interface have been studied. The Gurtin–Murdoch model has been adopted for surface and interfacial elasticity....
-
On the Nonlinea Distortions of Sound and its Coupling with Other Modes in a Gasesous Plasma with Finite Electric Conductivity in a Magnetic Field
PublicationNonlinear phenomena of the planar and quasi-planar magnetoacoustic waves are considered. We focus on deriving of equations which govern nonlinear excitation of the non-wave motions by the intense sound in initially static gaseous plasma. The plasma is treated as an ideal gas with finite electrical conductivity permeated by a magnetic field orthogonal to the trajectories of gas particles. This introduces dispersion of a flow. Magnetoacoustic...
-
Anti-plane shear waves in an elastic strip rigidly attached to an elastic half-space
PublicationWe consider the anti-plane shear waves in a domain consisting of an infinite layer with a thin coating lying on an elastic half-space. The elastic properties of the coating, layer, and half-space are assumed to be different. On the free upper surface we assume the compatibility condition within the Gurtin–Murdoch surface elasticity, whereas at the plane interface we consider perfect contact. For this problem there exist two possible...
-
Surface finite viscoelasticity and surface anti-plane waves
PublicationWe introduce the surface viscoelasticity under finite deformations. The theory is straightforward generalization of the Gurtin–Murdoch model to materials with fading memory. Surface viscoelasticity may reflect some surface related creep/stress relaxation phenomena observed at small scales. Discussed model could also describe thin inelastic coatings or thin interfacial layers. The constitutive equations for surface stresses are...
-
Electromagnetic Control and Dynamics of Generalized Burgers’ Nanoliquid Flow Containing Motile Microorganisms with Cattaneo–Christov Relations: Galerkin Finite Element Mechanism
PublicationIn our research work, we have developed a model describing the characteristics of the bio-convection and moving microorganisms in the flows of a magnetized generalized Burgers’ nanoliquid with Fourier’s and Fick’s laws in a stretchable sheet. Considerations have been made to Cattaneo–Christov mass and heat diffusion theory. According to the Cattaneo–Christov relation, the Buongiorno phenomenon for the motion of a nanoliquid in...
-
The influence of frequency separation on imaging properties in DFEIT
PublicationW artykule przedstawiono wpływ wyboru składowych częstotliwościowych dla różnicowej tomografii impedancyjnej na wynik i własności obrazowania w dwuczęstotliwościowej różnicowej tomografii impedancyjnej.A Dual Frequency EIT is an extension of a traditional EIT that uses two sinusoidal signals for imaging. Appropriate selection of signals' frequency allows to achieve reasonable contrast of imaged structure. It has already been shown...
-
FDTD Method for Electromagnetic Simulations in Media Described by Time-Fractional Constitutive Relations
PublicationIn this paper, the finite-difference time-domain (FDTD) method is derived for electromagnetic simulations in media described by the time-fractional (TF) constitutive relations. TF Maxwell’s equations are derived based on these constitutive relations and the Grünwald–Letnikov definition of a fractional derivative. Then the FDTD algorithm, which includes memory effects and energy dissipation of the considered media, is introduced....
-
Simulation of unsteady flow over floodplain using the diffusive wave equation and the modified finite element method
PublicationWe consider solution of 2D nonlinear diffusive wave equation in a domain temporarily covered by a layer of water. A modified finite element method with triangular elements and linear shape functions is used for spatial discretization. The proposed modification refers to the procedure of spatial integration and leads to a more general algorithm involving a weighting parameter. The standard finite element method and the finite difference...
-
Tuning of microstructure in engineered poly (trimethylene terephthalate) based blends with nano inclusion as multifunctional additive
PublicationImmiscible blends and their composites are heterogeneous and have variable morphology due to variation in mesophase regions. Tuning, i.e. controlling the phase dimension is important, thereof we report a “super-combo” effect of multiwalled carbon nanotubes (MWCNTs) in poly (trimethylene terephthalate)/polypropylene (PTT/ PP) blend system. MWCNTs act as a good reinforcing agent and compatibilizer in the otherwise immiscible PTT/...