Search results for: SUBCUBIC GRAPHS - Bridge of Knowledge

Search

Search results for: SUBCUBIC GRAPHS

Filters

total: 14

clear all filters


Chosen catalog filters

  • Category

  • Year

  • Options

clear Chosen catalog filters disabled

Search results for: SUBCUBIC GRAPHS

  • Interval incidence coloring of subcubic graphs

    In this paper we study the problem of interval incidence coloring of subcubic graphs. In [14] the authors proved that the interval incidence 4-coloring problem is polynomially solvable and the interval incidence 5-coloring problem is N P-complete, and they asked if χii(G) ≤ 2∆(G) holds for an arbitrary graph G. In this paper, we prove that an interval incidence 6-coloring always exists for any subcubic graph G with ∆(G) = 3.

    Full text available to download

  • On the hardness of computing span of subcubic graphs

    In the paper we study the problem of finding ξ-colorings with minimal span, i.e. the difference between the largest and the smallest color used.

    Full text to download in external service

  • An approximation algorithm for maximum P3-packing in subcubic graphs

    Publication

    W pracy podano algorytm 4/3-przyliżony dla trudnego obliczeniowo problemu umieszczania wierzchołkowo rozłącznych dwukrawędziowych ścieżek w grafach o stopniu maksymalnym 3 i stopniu minimalnym 2. Poprawiono tym samym wcześniejsze wyniki dla grafów kubicznych (A. Kelmans, D. Mubayi, Journal of Graph Theory 45, 2004).

    Full text to download in external service

  • Sharp bounds for the complexity of semi-equitable coloring of cubic and subcubic graphs

    Publication

    - Year 2016

    In this paper we consider the complexity of semi-equitable k-coloring of the vertices of a cubic or subcubic graph. We show that, given n-vertex subcubic graph G, a semi-equitable k-coloring of G is NP-hard if s >= 7n/20 and polynomially solvable if s <= 7n/21, where s is the size of maximum color class of the coloring.

    Full text to download in external service

  • Tight bounds on the complexity of semi-equitable coloring of cubic and subcubic graphs

    Publication

    - DISCRETE APPLIED MATHEMATICS - Year 2018

    We consider the complexity of semi-equitable k-coloring, k>3, of the vertices of a cubic or subcubic graph G. In particular, we show that, given a n-vertex subcubic graph G, it is NP-complete to obtain a semi-equitable k-coloring of G whose non-equitable color class is of size s if s>n/3, and it is polynomially solvable if s, n/3.

    Full text available to download

  • Interval incidence coloring of bipartite graphs

    In this paper we study the problem of interval incidence coloring of bipartite graphs. We show the upper bound for interval incidence coloring number (χii) for bipartite graphs χii≤2Δ, and we prove that χii=2Δ holds for regular bipartite graphs. We solve this problem for subcubic bipartite graphs, i.e. we fully characterize the subcubic graphs that admit 4, 5 or 6 coloring, and we construct a linear time exact algorithm for subcubic...

    Full text available to download

  • Global edge alliances in graphs

    In the paper we introduce and study a new problem of finding a minimum global edge alliance in a graph which is related to the global defensive alliance (Haynes et al., 2013; Hedetniemi, 2004) and the global defensive set (Lewoń et al., 2016). We proved the NP-completeness of the global edge alliance problem for subcubic graphs and we constructed polynomial time algorithms for trees. We found the exact values of the size of the...

    Full text available to download

  • Strategic balance in graphs

    For a given graph G, a nonempty subset S contained in V ( G ) is an alliance iff for each vertex v ∈ S there are at least as many vertices from the closed neighbourhood of v in S as in V ( G ) − S. An alliance is global if it is also a dominating set of G. The alliance partition number of G was defined in Hedetniemi et al. (2004) to be the maximum number of sets in a partition of V ( G ) such that each set is an alliance. Similarly,...

    Full text available to download

  • 2-Coloring number revisited

    2-Coloring number is a parameter, which is often used in the literature to bound the game chromatic number and other related parameters. However, this parameter has not been precisely studied before. In this paper we aim to fill this gap. In particular we show that the approximation of the game chromatic number by the 2-coloring number can be very poor for many graphs. Additionally we prove that the 2-coloring number may grow...

    Full text available to download

  • The computational complexity of the backbone coloring problem for bounded-degree graphs with connected backbones

    Given a graph G, a spanning subgraph H of G and an integer λ>=2, a λ-backbone coloring of G with backbone H is a vertex coloring of G using colors 1, 2, ..., in which the color difference between vertices adjacent in H is greater than or equal to lambda. The backbone coloring problem is to find such a coloring with maximum color that does not exceed a given limit k. In this paper, we study the backbone coloring problem for bounded-degree...

    Full text to download in external service

  • Interval incidence graph coloring

    In this paper we introduce a concept of interval incidence coloring of graphs and survey its general properties including lower and upper bounds on the number of colors. Our main focus is to determine the exact value of the interval incidence coloring number χii for selected classes of graphs, i.e. paths, cycles, stars, wheels, fans, necklaces, complete graphs and complete k-partite graphs. We also study the complexity of the...

    Full text available to download

  • Global defensive sets in graphs

    In the paper we study a new problem of finding a minimum global defensive set in a graph which is a generalization of the global alliance problem. For a given graph G and a subset S of a vertex set of G, we define for every subset X of S the predicate SEC ( X ) = true if and only if | N [ X ] ∩ S | ≥ | N [ X ] \ S | holds, where N [ X ] is a closed neighbourhood of X in graph G. A set S is a defensive alliance if and only if for...

    Full text available to download

  • Tight bounds on global edge and complete alliances in trees

    In the talk the authors present some tight upper bounds on global edge alliance number and global complete alliance number of trees. Moreover, we present our NP-completeness results from [8] for global edge alliances and global complete alliances on subcubic bipartite graphs without pendant vertices. We discuss also polynomial time exact algorithms for finding the minimum global edge alliance on trees [7] and complete alliance...

    Full text to download in external service

  • An O ( n log n ) algorithm for finding edge span of cacti

    Let G=(V,E) be a nonempty graph and xi be a function. In the paper we study the computational complexity of the problem of finding vertex colorings c of G such that: (1) |c(u)-c(v)|>=xi(uv) for each edge uv of E; (2) the edge span of c, i.e. max{|c(u)-c(v)|: uv belongs to E}, is minimal. We show that the problem is NP-hard for subcubic outerplanar graphs of a very simple structure (similar to cycles) and polynomially solvable for...

    Full text available to download