Filters
total: 13
Search results for: autoencoders
-
Condition-Based Monitoring of DC Motors Performed with Autoencoders
PublicationThis paper describes a condition-based monitoring system estimating DC motor degradation with the use of an autoencoder. Two methods of training the autoencoder are evaluated, namely backpropagation and extreme learning machines. The root mean square (RMS) error in the reconstruction of successive fragments of the measured DC motor angular-frequency signal, which is fed to the input of autoencoder, is used to determine the health...
-
Detection of anomalies in bee colony using transitioning state and contrastive autoencoders
PublicationHoneybees plays vital role for the environmental sustainability and overall agricultural economy. Assisting bee colonies within their proper functioning brings the attention of researchers around the world. Electronics systems and machine learning algorithms are being developed for classifying specific undesirable bee behaviors in order to alert about upcoming substantial losses. However, classifiers could be impaired when used...
-
Remote Health Monitoring of Wind Turbines Employing Vibroacoustic Transducers and Autoencoders
PublicationImplementation of remote monitoring technology for real wind turbine structures designed to detect potential sources of failure is described. An innovative multi-axis contactless acoustic sensor measuring acoustic intensity as well as previously known accelerometers were used for this purpose. Signal processing methods were proposed, including feature extraction and data analysis. Two strategies were examined: Mel Frequency Cepstral...
-
Automatic audio signal mixing system based on one-dimensional Wave-U-Net autoencoders
PublicationThe purpose of this dissertation is to develop an automatic song mixing system that is capable of automatically mixing a song with good quality in any music genre. This work recalls first the audio signal processing methods used in audio mixing, and it describes selected methods for automatic audio mixing. Then, a novel architecture built based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. Models...
-
Automatic music signal mixing system based on one-dimensional Wave-U-Net autoencoders
PublicationThe purpose of this paper is to show a music mixing system that is capable of automatically mixing separate raw recordings with good quality regardless of the music genre. This work recalls selected methods for automatic audio mixing first. Then, a novel deep model based on one-dimensional Wave-U-Net autoencoders is proposed for automatic music mixing. The model is trained on a custom-prepared database. Mixes created using the...
-
Analysis of Denoising Autoencoder Properties Through Misspelling Correction Task
PublicationThe paper analyzes some properties of denoising autoencoders using the problem of misspellings correction as an exemplary task. We evaluate the capacity of the network in its classical feed-forward form. We also propose a modification to the output layer of the net, which we called multi-softmax. Experiments show that the model trained with this output layer outperforms traditional network both in learning time and accuracy. We...
-
Automatic Clustering of EEG-Based Data Associated with Brain Activity
PublicationThe aim of this paper is to present a system for automatic assigning electroencephalographic (EEG) signals to appropriate classes associated with brain activity. The EEG signals are acquired from a headset consisting of 14 electrodes placed on skull. Data gathered are first processed by the Independent Component Analysis algorithm to obtain estimates of signals generated by primary sources reflecting the activity of the brain....
-
Automatic labeling of traffic sound recordings using autoencoder-derived features
PublicationAn approach to detection of events occurring in road traffic using autoencoders is presented. Extensions of existing algorithms of acoustic road events detection employing Mel Frequency Cepstral Coefficients combined with classifiers based on k nearest neighbors, Support Vector Machines, and random forests are used. In our research, the acoustic signal gathered from the microphone placed near the road is split into frames and converted...
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublicationWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this...
-
Energy-Efficient Self-Supervised Technique to Identify Abnormal User Over 5G Network for E-Commerce
PublicationWithin the realm of e-commerce networks, it is frequently observed that certain users exhibit behavior patterns that differ substantially from the normative behaviors exhibited by the majority of users. The identification of these atypical individuals and the understanding of their behavioral patterns are of significant practical significance in maintaining order on e-commerce platforms. One such method for accomplishing this objective...
-
Application of autoencoder to traffic noise analysis
PublicationThe aim of an autoencoder neural network is to transform the input data into a lower-dimensional code and then to reconstruct the output from this code representation. Applications of autoencoders to classifying sound events in the road traffic have not been found in the literature. The presented research aims to determine whether such an unsupervised learning method may be used for deploying classification algorithms applied to...
-
Employing Subjective Tests and Deep Learning for Discovering the Relationship between Personality Types and Preferred Music Genres
PublicationThe purpose of this research is two-fold: (a) to explore the relationship between the listeners’ personality trait, i.e., extraverts and introverts and their preferred music genres, and (b) to predict the personality trait of potential listeners on the basis of a musical excerpt by employing several classification algorithms. We assume that this may help match songs according to the listener’s personality in social music networks....
-
Deep learning for recommending subscription-limited documents
PublicationDocuments recommendation for a commercial, subscription-based online platform is important due to the difficulty in navigation through a large volume and diversity of content available to clients. However, this is also a challenging task due to the number of new documents added every day and decreasing relevance of older contents. To solve this problem, we propose deep neural network architecture that combines autoencoder with...