Filters
total: 3511
-
Catalog
displaying 1000 best results Help
Search results for: measurement
-
ECG measurement in the bathtub - drl on the outside of the bathtub on both sides, measuring electrodes on the front and back of the bathtub- men
Open Research DataThe measurement data shows the measurement of the ECG signal in water in the bathtub. The data includes the measurement time, the reference ECG signal from the chest, and the ECG signal measured by electrodes placed in the bathtub without contact with the human body. Using the presented data, it is possible to estimate the optimal arrangement of measuring...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Woman 49 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Woman 27 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Man 29 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Woman 24 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Man 30 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Man 53 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
ECG measurement from the hand with first elbow rests on the armrest, second elbow in the air - Woman 30 age
Open Research DataThe data set shows the measurements of the ECG signal from the hand made with the use of the proprietary measuring system, based on the AD8232 and STM32 chips. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the hand. The results show the ECG signal for a specific hand and forearm position relative...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Man 29 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Woman 27 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Woman 28 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Man 53 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Man 30 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Woman 24 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
PULSE and ECG measurement from the hand with single fingers - elbows resting on the armrests of the chair - Woman 30 age
Open Research DataThe data set presents the measurements of the pulse and the ECG signal from the hand made with the use of a proprietary measuring system based on the AD8232 chip, a set of green diode and a phototransistor made on the STM32 microcontroller. Thanks to such a constructed device, it is possible to measure the ECG signal in a non-standard way - from the...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 130 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 110 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 120 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 75 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 65 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 90 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 80 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 45 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 35 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 50 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 70 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapasitor with the use of ZnO coated microsphere-based fiber-optic sensor - 30 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 60 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 40 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 85 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Temperature measurement of supercapacitor with the use of ZnO coated microsphere-based fiber-optic sensor - 55 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements of supercapasitor, is presented. Internal temperature of the supercapacitor is investigated in the range between 30°C and 90°C. The supercapacitor temperature was investigated using...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 100 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Current divider-based nanosecond high current pulse measuring systems
PublicationThis paper presents the analysis of the new approach to the measurement methodology of significant values (in order of hundreds of kA) and huge steepness (in order of MA/μs) current pulses based on current dividers along with a comparison of the various types transducers suitability in measuring systems with such extreme parameters. Such dividers are used to extend the measurement ranges of current transducers with limited current...
-
Novel fast non-linear electrochemical impedance method for corrosion investigations
PublicationThe paper presents a novel approach to corrosion rate monitoring using non-linear electrochemical impedance spectroscopy. The authors propose a new variant of non-linear impedance measurement using amplitude-modulated multi-frequency ac perturbation signal. It allows shortening of measurement duration so it is possible to monitor corrosion rate of the systems experiencing rapid changes. In this way a limitation resulting from lack...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 140 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 160 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 180 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 220 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 200 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-0optic sensor - 250 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 210 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 300 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 270 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 190 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 260 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 290 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 170 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 280 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 150 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...
-
Measurement spectrum obtained with the use of ZnO coated microsphere-based fiber-optic sensor - 230 Celsius degrees
Open Research DataApplication of a microsphere-based fiber-optic sensor with 200 nm zinc oxide (ZnO) coating, deposited by Atomic Layer Deposition (ALD) method, for temperature measurements between 100°C and 300°C, is presented. The main advantage of integrating a fiber-optic microsphere with a sensing device is the possibility of monitoring the integrity of the sensor...