Filters
total: 24
Search results for: EXISTENCE AND UNIQUENESS
-
Linear Pantographic Sheets: Existence and Uniqueness of Weak Solutions
Publicationwe address the well-posedness of the planar linearized equilibrium problem for homogenized pantographic lattices. To do so: (i) we introduce a class of subsets of anisotropic Sobolev’s space as the most suitable energy space E relative to assigned boundary conditions; (ii) we prove that the considered strain energy density is coercive and positive definite in E ; (iii) we prove that the set of placements for which the strain...
-
Existence and uniqueness for neutral equations with state dependent delays
PublicationW pracy w celu wykazania istnienia i jednoznaczności rozwiązania równania została zaprezentowana metoda porównawcza.
-
On existence and uniqueness of weak solutions for linear pantographic beam lattices models
PublicationIn this paper, we discuss well-posedness of the boundary-value problems arising in some “gradientincomplete” strain-gradient elasticity models, which appear in the study of homogenized models for a large class ofmetamaterials whosemicrostructures can be regarded as beam lattices constrained with internal pivots. We use the attribute “gradient-incomplete” strain-gradient elasticity for a model in which the considered strain energy...
-
Existence and uniqueness for neutral equations with delay dependant on a solution and its derivative
PublicationDla wykazania istnienia i jednoznaczności w pracy została zaprezentowana metoda porównawcza.
-
Existence and uniqueness of solutions for single-population McKendrick-von Foerster models with renewal
PublicationWe study a McKendrick-von Foerster type equation with renewal. This model is represented by a single equation which describes one species which produces young individuals. The renewal condition is linear but takes into account some history of the population. This model addresses nonlocal interactions between individuals structured by age. The vast majority of size-structured models are also treatable. Our model generalizes a number...
-
Existence and uniqueness of monotone and bounded solutions for a finite-difference discretization a` la Mickens of the generalized Burgers–Huxley equation.
PublicationDeparting from a generalized Burgers–Huxley partial differential equation, we provide a Mickens-type, nonlinear, finite-difference discretization of this model. The continuous system is a nonlinear regime for which the existence of travelling-wave solutions has been established previously in the literature. We prove that the method proposed also preserves many of the relevant characteristics of these solutions, such as the positivity,...
-
Existence of unbounded solutions to parabolic equations with functional dependence
PublicationThe Cauchy problem for nonlinear parabolic differential-functional equations is considered. Under natural generalized Lipschitz-type conditions with weights, the existence and uniqueness of unbounded solutions is obtained in three main cases: (i) the functional dependence u(·); (ii) the functional dependence u(·) and ∂xu(·); (iii) the functional dependence u(·)and the pointwise dependence ∂xu(t,x).
-
On a comparison principle and the uniqueness of spectral flow
PublicationThe spectral flow is a well-known quantity in spectral theory that measures the variation of spectra about 0 along paths of selfadjoint Fredholm operators. The aim of this work is twofold. Firstly, we consider homotopy invariance properties of the spectral flow and establish a simple formula which comprises its classical homotopy invariance and yields a comparison theorem for the spectral flow under compact perturbations. We apply...
-
Functional delay fractional equations
PublicationIn this paper, we discuss functional delay fractional equations. A Banach fixed point theorem is applied to obtain the existence (uniqueness) theorem. We also discuss such problems when a delay argument has a form α(t) = αt, 0 < α < 1, by Rusing the method of successive approximations. Some existence results are also formulated in this case. An example illustrates the main result.
-
Database of the illustrative simulations of the nonstandard approximation of the generalized Burgers–Huxley equation
Open Research DataThe presented dataset is a result of numerical analysis of a generalized Burgers–Huxley partial differential equation. An analyzed diffusive partial differential equation consist with nonlinear advection and reaction. The reaction term is a generalized form of the reaction law of the Hodgkin–Huxley model, while the advection is a generalized form of...
-
On Solvability of Boundary Value Problems for Elastic Micropolar Shells with Rigid Inclusions
PublicationIn the framework of the linear theory of micropolar shells, existence and uniqueness theorems for weak solutions of boundary value problems describing small deformations of elastic micropolar shells connected to a system of absolutely rigid bodies are proved. The definition of a weak solution is based on the principle of virial movements. A feature of this problem is non-standard boundary conditions at the interface between the...
-
On solvability of initial boundary-value problems of micropolar elastic shells with rigid inclusions
PublicationThe problem of dynamics of a linear micropolar shell with a finite set of rigid inclusions is considered. The equations of motion consist of the system of partial differential equations (PDEs) describing small deformations of an elastic shell and ordinary differential equations (ODEs) describing the motions of inclusions. Few types of the contact of the shell with inclusions are considered. The weak setup of the problem is formulated...
-
On well-posedness of the first boundary-value problem within linear isotropic Toupin–Mindlin strain gradient elasticity and constraints for elastic moduli
PublicationWithin the linear Toupin–Mindlin strain gradient elasticity we discuss the well-posedness of the first boundary-value problem, that is, a boundary-value problem with Dirichlet-type boundary conditions on the whole boundary. For an isotropic material we formulate the necessary and sufficient conditions which guarantee existence and uniqueness of a weak solution. These conditions include strong ellipticity written in terms of higher-order...
-
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
PublicationIn this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models...
-
Equivalence of equicontinuity concepts for Markov operators derived from a Schur-like property for spaces of measures
PublicationVarious equicontinuity properties for families of Markov operators have been – and still are – used in the study of existence and uniqueness of invariant probability for these operators, and of asymptotic stability. We prove a general result on equivalence of equicontinuity concepts. It allows comparing results in the literature and switching from one view on equicontinuity to another, which is technically convenient in proofs....
-
On weak solutions of boundary value problems within the surface elasticity of Nth order
PublicationA study of existence and uniqueness of weak solutions to boundary value problems describing an elastic body with weakly nonlocal surface elasticity is presented. The chosen model incorporates the surface strain energy as a quadratic function of the surface strain tensor and the surface deformation gradients up to Nth order. The virtual work principle, extended for higher‐order strain gradient media, serves as a basis for defining...
-
Straightened characteristics of McKendrick-von Foerster equation
PublicationWe study the McKendrick-von Foerster equation with renewal (that is the age-structured model, with total population dependent coefficient and nonlinearity). By using a change of variables, the model is then transformed to a standard age-structured model in which the total population dependent coefficient of the transport term reduces to a constant 1. We use this transformation to get existence, uniqueness of solutions of the problem...
-
On the convergence of a nonlinear finite-difference discretization of the generalized Burgers–Fisher equation
PublicationIn this note, we establish analytically the convergence of a nonlinear finite-difference discretization of the generalized Burgers-Fisher equation. The existence and uniqueness of positive, bounded and monotone solutions for this scheme was recently established in [J. Diff. Eq. Appl. 19, 1907{1920 (2014)]. In the present work, we prove additionally that the method is convergent of order one in time, and of order two in space. Some...
-
A NUMERICAL STUDY ON THE DYNAMICS OF DENGUE DISEASE MODEL WITH FRACTIONAL PIECEWISE DERIVATIVE
PublicationThe aim of this paper is to study the dynamics of Dengue disease model using a novel piecewise derivative approach in the sense of singular and non-singular kernels. The singular kernel operator is in the sense of Caputo, whereas the non-singular kernel operator is the Atangana–Baleanu Caputo operator. The existence and uniqueness of a solution with piecewise derivative are examined for the aforementioned problem. The suggested...
-
Rotating rod and ball
PublicationWe consider a mechanical system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points. The ball is reflected elastically when colliding with the rod and moves freely between consecutive hits. A sliding motion along the rod is also allowed. We prove the existence and uniqueness of the motion with a given position and velocity at a certain time...
-
Billiard in a rotating half-plane
PublicationThe main objective of this research is to study the properties of a billiard system in an unbounded domain with moving boundary. We consider a system consisting of an infinite rod (a straight line) and a ball (a massless point) on the plane. The rod rotates uniformly around one of its points and experiences elastic collisions with the ball. We define a mathematical model for the dynamics of such a system and write down asymptotic...
-
Man in Early Islamic Philosophy: Al-Kindi and Al-Farabi
PublicationMan was, neither for Al-Kindi, nor for Al-Farabi, a clearly isolated object of philosophical reflection. This does not mean, however, that both Islamic philosophers were not at all concerned with the uniqueness of man, his nature or the purpose of his existence. In order to understand and analyze in depth the philosophies of man voiced by Al-Kindi and Al-Farabi, one must focus primarily on their epistemologies, on their philosophical...
-
On weak solutions of the boundary value problem within linear dilatational strain gradient elasticity for polyhedral Lipschitz domains
PublicationWe provide the proof of an existence and uniqueness theorem for weak solutions of the equilibrium problem in linear dilatational strain gradient elasticity for bodies occupying, in the reference configuration, Lipschitz domains with edges. The considered elastic model belongs to the class of so-called incomplete strain gradient continua whose potential energy density depends quadratically on linear strains and on the gradient of...
-
On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity
PublicationIn this paper, it is proven an existence and uniqueness theorem for weak solutions of the equilibrium problem for linear isotropic dilatational strain gradient elasticity. Considered elastic bodies have as deformation energy the classical one due to Lamé but augmented with an additive term that depends on the norm of the gradient of dilatation: only one extra second gradient elastic coefficient is introduced. The studied class...