Search results for: bisphenol a removal
-
The influence of magnetic particle incorporation on bisphenol A removal by β-cyclodextrin-derived sorbent
PublicationA novel, biomass-derived hybrid sorbent Ban-CD-EPI-Fe was successfully synthesized in a coprecipitation method, in which β-cyclodextrin copolymerized with banana peel extract and epichlorohydrin was grafted onto an iron oxide surface. The composition, presence of functional groups, morphology, thermal stability, and magnetic properties of the obtained material were characterized by Powder X-Ray Diffraction (XRD), X-Ray Photoelectron...
-
Efficiency of landfill leachate treatment in a MBR/UF system combined with NF, with a special focus on phthalates and bisphenol A removal
PublicationIn this study, a pilot-scale membrane bioreactor (MBR) was operated at a municipal solid waste plant (MSWP) to treat a mixture of landfill leachates (LLs) obtained from modern (MP-LLs) and previous (PP-LLs) waste cells. The MBR unit combined anoxic and aerobic zones with external ultra- and nanofiltration (MBR/UF and MBR/UF/NF, respectively). In addition to the removal of macropollutants, special attention was given to phthalates...
-
Influence of the boron doping level on the electrochemical oxidation of raw landfill leachates: advanced pre-treatment prior to the biological nitrogen removal
PublicationThe electrochemical oxidative treatment of landfill leachates (LLs) containing high amounts of ammonia nitrogen and organic matter was used as a promising method, prior to biological processes, to achieve the final effluent quality that would be acceptable by current regulations. The deposited boron-doped diamond electrodes (BDDs) with different boron doping concentrations (10000, 5000 and 500 ppm of B) were applied as anodes....
-
β-cyclodextrin-containing polymer based on renewable cellulose resources for effective removal of ionic and non-ionic toxic organic pollutants from water
PublicationA novel, bio-derived cyclodextrin-based trifunctional adsorbent has been successfully synthesized for efficient, rapid and simultaneous removal of a broad-spectrum of toxic ionic (anionic and cationic dyes) and non-ionic organic pollutants from water. The composition, morphology and the presence of functional groups in the obtained sorption material were characterized by elemental analysis, XRD, SEM, and FTIR spectroscopy. The...
-
Ball milling treatment of Mn3O4 regulates electron transfer pathway for peroxymonosulfate activation
PublicationHeterogeneous metal catalysts have attracted considerable interest in advanced oxidation processes (AOPs) for wastewater treatment by activating peroxymonosulfate (PMS). However, it remains challenging to the rational design of efficient reaction pathway for high-performance contaminants removal by regulating the inherent structure of metal oxides. Herein, a high-energy ball milling method was employed to modulate the electronic...
-
Singlet oxygen-dominated peroxymonosulfate activation by layered crednerite for organic pollutants degradation in high salinity wastewater
PublicationAdvanced oxidation processes have been widely studied for organic pollutants treatment in water, but the degradation performance of radical-dominated pathway was severely inhibited by the side reactions between the anions and radicals, especially in high salinity conditions. Here, a singlet oxygen (1O2)-dominated non-radical process was developed for organic pollutants degradation in high salinity wastewater, with layered crednerite...
-
Mechanochemically synthesized Mn3O4@β-cyclodextrin mediates efficient electron transfer process for peroxymonosulfate activation
PublicationThe rational surface engineering of heterogeneous catalysts is of great significance in advanced oxidation processes (AOPs) for eliminating refractory contaminants but remains challenging. In this study, β-cyclodextrin modified Mn3O4 (Mn3O4@β-CD) was prepared through a mechanochemical approach for peroxymonosulfate (PMS) activation, which achieved efficient bisphenol A (BPA) removal via electron transfer process (ETP). The reactive...
-
Advanced Oxidation Processes for Degradation of Water Pollutants—Ambivalent Impact of Carbonate Species: A Review
PublicationAdvanced oxidation processes (AOPs) hold great promise in the removal of organic contaminants. Reactive oxygen species (ROS) produced in AOPs react with target pollutants to initially form several intermediate compounds that finally undergo complete mineralization. Such observations are reported, especially for laboratory-scale experiments performed in pure water. On the other hand, while considering real contaminated wastewater...