Filters
total: 53430
filtered: 193
-
Catalog
- Publications 25610 available results
- Journals 707 available results
- Publishing Houses 95 available results
- People 2199 available results
- Inventions 250 available results
- Projects 599 available results
- Laboratories 39 available results
- Research Teams 107 available results
- Research Equipment 27 available results
- e-Learning Courses 8469 available results
- Events 671 available results
- Offers 1 available results
- Open Research Data 14656 available results
Chosen catalog filters
Search results for: Ochrona przed pożarem i zagrożeniami środowiskowymi
-
Miedzyborz 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataMiedzyborz 2021 - video data - pedestrian, bicycles, vehicles
-
Krotoszyn 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataKrotoszyn 2021 - video data - pedestrian, bicycles, vehicles
-
state aid for research, development and innovation ( R+D+I)
Open Research DataThe dataset encompasses a choice of important legal acts, a list of selected Polish bibliography, some important individual EC decisions issued on the topic of state aid for research, development, and innovation during the budgetary periods 2007-2013 and 2014-2020. Thanks to that the reader gets the possibility to acquire basic knowledge on the abovementioned...
-
Gostyn 2021 - video data I - pedestrian, bicycles, vehicles
Open Research DataGostyn 2021 - video data - pedestrian, bicycles, vehicles
-
Case Study NEB Atlas / part I - 3D Models / Brunnshög, Lund
Open Research DataThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the Brunnshög district in Lund, Sweden....
-
Hydrological predictors used for vegetation modelling in the lower Biebrza valley 1900-2099
Open Research DataThis data set contains hydrological predictors used for vegetation modelling in the lower Biebrza valley, NE Poland.The predictors were obtained from simulations using integrated hydrological model - HydroGeoSphere, with the Hydraulic Mixing-Cell method.Forcing data for the model were Twentieth Century Reanalysis (20CR) data for the period 1900-2015...
-
Case Study NEB Atlas / part I - 3D Models / King's Cross, London
Open Research DataThe data presents the results of work on the analysis of contemporary neighbourhoods. The aim of this part of the research was to create a digital model - a simplified digital twin - for selected parts of housing estates already realised in various cities in Europe. This group presents a model for a fragment of the King's Cross, London, UK. The students...
-
Source code - AI models (MLM1-5 - series I-III - QNM opt)
Open Research DataSource code - AI models (MLM1-5 - series I-III - QNM opt) for the paper "Computational Complexity and Its Influence on Concrete Compressive Strength Prediction Capabilities of Machine Learning Models for Concrete Mix Design Support" accepted for publication.
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2017, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2017 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2019, two years after the respondents obtained graduate status. The research sample included 1594 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2016, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2016 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2018, two years after the respondents obtained graduate status. The research sample included 1947 respondents. To summarize, in general, respondents...
-
Gdańsk University of Technology graduates’ self-assessment of selected digital competencies by gender – the year 2018, part I
Open Research DataThe dataset includes data from the survey on the Gdańsk University of Technology graduates' from the year 2018 on their self-assessment of selected digital competencies by gender. The survey was conducted in 2020, two years after the respondents obtained graduate status. The research sample included 1315 respondents. To summarize, in general, respondents...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K01
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - full run
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K06
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K04
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K09 - pre-run (10s)
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - PARAFFIN OIL. Specim. set K08
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: PARAFFIN OIL. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K07
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K05
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). Lubricant - DISTILLED WATER. Specim. set K02
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DISTILLED WATER. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate...
-
Wear in reciprocating siding friction tests. Ball-on-flat contact. Sintered alumina ceramics (98%). No lubrication (DRY). Specim. set K03
Open Research DataFriction and wear tests in ball-on-flat contact. Both specimens made of sintered alumina ceramics (98%) - self-mated contact.Linear reciprocating motion.Lubrication: DRY. Sliding velocity (peak): 0.1 m/s. Load (normal force): 5N. Test rig: TPZ-1 Tribometer.Running time: progressive increments of 10, 15, 30, 60, 180 and 300s. (stored in separate folders).Specimen...
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -100 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -50 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -10 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid (sphere) magnetic signature parameters-Be = 50 mT, I = 70 deg, z = -20 m, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 135 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 90 deg, j = 45 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters -Be = 50 mT, I = 70 deg, z = 10 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 100 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 20 m, q = 100 deg, j = 90 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters- Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 10 m, q = 90 deg, j = 90 deg, a =4 m, e = 1, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 200 m, q = 100 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 50 m, q = 80 deg, j = 45 deg, a =4 m, e = 4, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 90 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.
-
Description of symmetrical prolate ellipsoid magnetic signature parameters-Be = 50 mT, I = 70 deg, z = 100 m, q = 80 deg, j = 45 deg, a =4 m, e = 8, mr = 100
Open Research DataThe Earth magnetic field (Fig.1): BE – total magnetic flux density, BEx – x component of the Earth magnetic flux density, BEy = 0 y component of the Earth magnetic flux density, BEz – z component of the Earth magnetic flux density, I – the inclination of the Earth magnetic field.