Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach - Publikacja - MOST Wiedzy

Wyszukiwarka

Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach

Abstrakt

To improve the user's localization estimation in indoor and outdoor environment a novel radiolocalization system using deep learning dedicated to work both in indoor and outdoor environment is proposed. It is based on the radio signatures using radio signals of opportunity from LTE an WiFi networks. The measurements of channel state estimators from LTE network and from WiFi network are taken by using the developed application. The user's position is calculated with a trained neural network system's models. Additionally the influence of various number of measurements from LTE and WiFi networks in the input vector on the positioning accuracy was examined. From the results it can be seen that using hybrid deep learning algorithm with a radio signatures method can result in localization error 24.3 m and 1.9 m lower comparing respectively to the GPS system and standalone deep learning algorithm with a radio signatures method in indoor environment. What is more, the combination of LTE and WiFi signals measurement in an input vector results in better indoor and outdoor as well as floor classification accuracy and less positioning error comparing to the input vector consisting measurements from only LTE network or from only WiFi network.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cytuj jako

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
International Journal of Electronics and Telecommunications nr 68, strony 594 - 607,
ISSN: 2081-8491
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Urwan S., Wysocka D., Pietrzak A., Cwalina K.: Position Estimation in Mixed Indoor-Outdoor Environment Using Signals of Opportunity and Deep Learning Approach// International Journal of Electronics and Telecommunications -,iss. 3 (2022), s.594-607
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.24425/ijet.2022.141279
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 114 razy

Publikacje, które mogą cię zainteresować

Meta Tagi