Filtry
wszystkich: 25
Najlepsze wyniki w katalogu: Potencjał Badawczy Pokaż wszystkie wyniki (24)
Wyniki wyszukiwania dla: anisotropic orlicz-sobolev space
-
Zespół Katedry Analizy Nieliniowej i Statystyki
Potencjał BadawczyW Katedrze prowadzone są badania w trzech wiodących kierunkach. Pierwszy dotyczy zastosowania metod topologicznych i wariacyjnych w układach dynamicznych, w teorii równań różniczkowych zwyczajnych i cząstkowych oraz w teorii bifurkacji. Drugim kierunkiem badań Katedry jest zastosowanie rachunku prawdopodobieństwa i teorii aproksymacji. Ostatnią specjalizacją jest Geometria i Grafika Komputerowa, która istnieje od 2014 roku. Wybór...
-
Zespół Katedry Rachunku Prawdopodobieństwa i Biomatematyki
Potencjał Badawczy* modele ryzyka i ich zastosowania * probabilistyczne i grafowe metody w biologii * stochastyczne równania różniczkowe * statystyczna analiza danych * teoria grafów * teoria i zastosowania stochastycznych układów dynamicznych w biologii i medycynie
-
Zespół Katedry Wytrzymałości Materiałów
Potencjał BadawczyKatedra zajmuje się zagadnieniami związanymi z wytrzymałością elementów konstrukcji, ich teorią oraz analizą, jak również do myśli przewodnich należy zaliczyć materiałowe badania doświadczalne oraz prace nad technologią betonu. Współpracujemy z przemysłem z branż budowlanych i okołobudowlanych, wykorzystując wypracowane doświadczenie i wiedzę z zakresu materiałów konstrukcyjnych i budowlanych.
Najlepsze wyniki w katalogu: Oferta Biznesowa Pokaż wszystkie wyniki (1)
Wyniki wyszukiwania dla: anisotropic orlicz-sobolev space
-
Laboratorium Syntezy Innowacyjnych Materiałów i Elementów
Oferta BiznesowaZespół specjalistycznych urządzeń pozwala dokonywać syntezy diamentu mikro- i nanokrystalicznego oraz diamentu domieszkowanego borem i azotem do zastosowań w optoelektronice oraz nanosensoryce. Domieszkowany borem nanodiament (BDD) jest obecnie najwydajniejszym materiałem półprzewodnikowym do zastosowania w wytwarzaniu biosensorów elektrochemicznych. Laboratorium może otrzymywać ciągłe cienkie polikrystaliczne, domieszkowane elektrody...
Pozostałe wyniki Pokaż wszystkie wyniki (19)
Wyniki wyszukiwania dla: anisotropic orlicz-sobolev space
-
Quasilinear elliptic problem in anisotropic Orlicz–Sobolev space on unbounded domain
PublikacjaWe study a quasilinear elliptic problem $-\text{div} (\nabla \Phi(\nabla u))+V(x)N'(u)=f(u)$ with anisotropic convex function $\Phi$ on the whole $\R^n$. To prove existence of a nontrivial weak solution we use the mountain pass theorem for a functional defined on anisotropic Orlicz-Sobolev space $\WLPhispace(\R^n)$. As the domain is unbounded we need to use Lions type lemma formulated for Young functions. Our assumptions broaden...
-
Anisotropic Orlicz–Sobolev spaces of vector valued functions and Lagrange equations
PublikacjaIn this paper we study some properties of anisotropic Orlicz and Orlicz–Sobolev spaces of vector valued functions for a special class of G-functions. We introduce a variational setting for a class of Lagrangian Systems. We give conditions which ensure that the principal part of variational functional is finitely defined and continuously differentiable on Orlicz–Sobolev space.
-
Mountain pass type periodic solutions for Euler–Lagrange equations in anisotropic Orlicz–Sobolev space
PublikacjaUsing the Mountain Pass Theorem, we establish the existence of periodic solution for Euler–Lagrange equation. Lagrangian consists of kinetic part (an anisotropic G-function), potential part and a forcing term. We consider two situations: G satisfying at infinity and globally. We give conditions on the growth of the potential near zero for both situations.
-
On the Fenchel–Moreau conjugate of G-function and the second derivative of the modular in anisotropic Orlicz spaces
PublikacjaIn this paper, we investigate the properties of the Fenchel–Moreau conjugate of G-function with respect to the coupling function c(x, A) = |A[x]2 |. We provide conditions that guarantee that the conjugate is also a G-function. We also show that if a G-function G is twice differentiable and its second derivative belongs to the Orlicz space generated by the Fenchel–Moreau conjugate of G then the modular generated by G is twice differentiable...
-
Mountain pass solutions to Euler-Lagrange equations with general anisotropic operator
PublikacjaUsing the Mountain Pass Theorem we show that the problem \begin{equation*} \begin{cases} \frac{d}{dt}\Lcal_v(t,u(t),\dot u(t))=\Lcal_x(t,u(t),\dot u(t))\quad \text{ for a.e. }t\in[a,b]\\ u(a)=u(b)=0 \end{cases} \end{equation*} has a solution in anisotropic Orlicz-Sobolev space. We consider Lagrangian $\Lcal=F(t,x,v)+V(t,x)+\langle f(t), x\rangle$ with growth conditions determined by anisotropic G-function and some geometric conditions...