COMPTES RENDUS MATHEMATIQUE - Czasopismo - MOST Wiedzy

Wyszukiwarka

COMPTES RENDUS MATHEMATIQUE

ISSN:

1631-073X

eISSN:

1778-3569

Dyscypliny:

  • Matematyka (Dziedzina nauk ścisłych i przyrodniczych)

Punkty Ministerialne: Pomoc

Punkty Ministerialne - aktualny rok
Rok Punkty Lista
Rok 2021 70 MNiSW 2019
Punkty Ministerialne - lata ubiegłe
Rok Punkty Lista
2021 70 MNiSW 2019
2020 70 MNiSW 2019
2019 70 MNiSW 2019
2018 20 A
2017 20 A
2016 20 A
2015 20 A
2014 20 A
2013 20 A
2012 20 A
2011 20 A
2010 27 A
2009 27 A
2008 27 A

Model czasopisma:

Open Access

Punkty CiteScore:

Punkty CiteScore - aktualny rok
Rok Punkty
Rok 2019 1.3
Punkty CiteScore - lata ubiegłe
Rok Punkty
2019 1.3
2018 1.1
2017 1.1
2016 1
2015 1.1
2014 1.1
2013 1.1
2012 1
2011 1.1

Impact Factor:

Zaloguj się aby zobaczyć Współczynnik Impact Factor dla tego czasopisma

Filtry

wszystkich: 3

  • Kategoria
  • Rok

Katalog Czasopism

Rok 2014
  • Bounds on the vertex-edge domination number of a tree
    Publikacja

    - COMPTES RENDUS MATHEMATIQUE - Rok 2014

    A vertex-edge dominating set of a graph $G$ is a set $D$ of vertices of $G$ such that every edge of $G$ is incident with a vertex of $D$ or a vertex adjacent to a vertex of $D$. The vertex-edge domination number of a graph $G$, denoted by $\gamma_{ve}(T)$, is the minimum cardinality of a vertex-edge dominating set of $G$. We prove that for every tree $T$ of order $n \ge 3$ with $l$ leaves and $s$ support vertices we have $(n-l-s+3)/4...

Rok 2011
  • A lower bound on the total outer-independent domination number of a tree

    A total outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set V(G)D is independent. The total outer-independent domination number of a graph G, denoted by gamma_t^{oi}(G), is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_t^{oi}(T) >= (2n-2l+2)/3,...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • An upper bound on the 2-outer-independent domination number of a tree

    A 2-outer-independent dominating set of a graph G is a set D of vertices of G such that every vertex of V(G)D has a at least two neighbors in D, and the set V(G)D is independent. The 2-outer-independent domination number of a graph G, denoted by gamma_2^{oi}(G), is the minimum cardinality of a 2-outer-independent dominating set of G. We prove that for every nontrivial tree T of order n with l leaves we have gamma_2^{oi}(T) <= (n+l)/2,...

    Pełny tekst do pobrania w serwisie zewnętrznym

wyświetlono 152 razy