ISSN:
eISSN:
2504-4990
Dyscypliny:
- automatyka, elektronika, elektrotechnika i technologie kosmiczne (Dziedzina nauk inżynieryjno-technicznych)
- informatyka techniczna i telekomunikacja (Dziedzina nauk inżynieryjno-technicznych)
- informatyka (Dziedzina nauk ścisłych i przyrodniczych)
Punkty Ministerialne: Pomoc
Rok | Punkty | Lista |
---|---|---|
Rok 2025 | 20 | Ministerialna lista czasopism punktowanych 2024 |
Rok | Punkty | Lista |
---|---|---|
2025 | 20 | Ministerialna lista czasopism punktowanych 2024 |
2024 | 20 | Ministerialna lista czasopism punktowanych 2024 |
2023 | 20 | Lista ministerialna czasopism punktowanych 2023 |
2022 | 20 | Lista ministerialna czasopism punktowanych (2019-2022) |
2021 | 20 | Lista ministerialna czasopism punktowanych (2019-2022) |
2020 | 20 | Lista ministerialna czasopism punktowanych (2019-2022) |
2019 | 20 | Lista ministerialna czasopism punktowanych (2019-2022) |
Model czasopisma:
Open Access
Punkty CiteScore:
Rok | Punkty |
---|---|
Rok 2023 | 6.3 |
Rok | Punkty |
---|---|
2023 | 6.3 |
2022 | 8.5 |
Impact Factor:
Zaloguj się aby zobaczyć Współczynnik Impact Factor dla tego czasopisma
Sherpa Romeo:
Prace opublikowane w tym czasopiśmie
Filtry
wszystkich: 1
Katalog Czasopism
Rok 2024
-
A Review on Machine Learning Deployment Patterns and Key Features in the Prediction of Preeclampsia
PublikacjaPrevious reviews have investigated machine learning (ML) models used to predict the risk of developing preeclampsia. However, they have not addressed the intended deployment of these models throughout pregnancy, nor have they detailed feature performance. This study aims to provide an overview of existing ML models and their intended deployment patterns and performance, along with identified features of high importance. This review...
wyświetlono 250 razy