Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g tori - Open Research Data - MOST Wiedzy

Wyszukiwarka

Database of the minimal sets of Lefschetz periods for Morse-Smale diffeomorphisms of a connected sum of g tori

Opis

Morse–Smale diffeomorphisms, structurally stable and having relatively simple dynamics, constitute an important subclass of diffeomorphisms that have been carefully studied during past decades. For a given Morse–Smale diffeomorphism one can consider “Minimal set of Lefschetz periods”, which provides the information about the set of periodic points of  a considered map, as it is the subset of its minimal periods.

The dataset consists of 20 files indexed by numbers g=1,...,20. Each file provides all minimal sets of Lefschetz periods for orientation preserving Morse–Smale diffeomorphisms of M(g), an orientable compact surface without boundary of genus g (i.e. a connected sum of g tori).

 The data set takes into account not only the algebraical restrictions  for the sets of minimal Lefschetz periods that come from zeta functions  but also topological ones that can be deduced from the structure of the cohomology ring.

The results are based on the algorithm available in the paper: G. Graff, M. Lebiedź, A. Myszkowski, Periodic expansion in determining minimal sets of Lefschetz periods for Morse–Smale diffeomorphisms, J. Fixed Point Theory Appl. (2019) 21:47, https://doi.org/10.1007/s11784-019-0680-4.

Plik z danymi badawczymi

torus_mper.zip
19.4 kB, S3 ETag 3ab64d2f174f6ec0bcc15f2f2b9b68c9-1, pobrań: 67
Hash pliku liczony jest ze wzoru
hexmd5(md5(part1)+md5(part2)+...)-{parts_count} gdzie pojedyncza część pliku jest wielkości 512 MB

Przykładowy skrypt do wyliczenia:
https://github.com/antespi/s3md5
pobierz plik torus_mper.zip

Informacje szczegółowe o pliku

Licencja:
Creative Commons: by 4.0 otwiera się w nowej karcie
CC BY
Uznanie autorstwa

Informacje szczegółowe

Rok publikacji:
2020
Data zatwierdzenia:
2021-01-04
Język danych badawczych:
angielski
Dyscypliny:
  • matematyka (Dziedzina nauk ścisłych i przyrodniczych)
DOI:
Identyfikator DOI 10.34808/se8g-r382 otwiera się w nowej karcie
Finansowanie:
Weryfikacja:
Politechnika Gdańska

Słowa kluczowe

Powiązane zasoby

Cytuj jako

wyświetlono 178 razy