A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation - Publikacja - MOST Wiedzy

Wyszukiwarka

A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation

Abstrakt

Application of Ti90RE10 alloys (RE = Ho, Er, Nd, Y, Ce, Tm) as a working electrode, instead of Ti pure foil in anodic oxidation in a fluoride-based electrolyte, resulted in formation of well-ordered nanotubes made of TiO2 and RE2O3 mixture, which could be efficiently used for pollutant removal from water and air phase upon UV and visible irradiation and easily separable from the reaction mixture to recycle. The as-prepared NTs were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), luminescence spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity of the synthesized samples was investigated used phenol and toluene as a model compounds to follow degradation kinetics. The influence of the RE metals on the photoelectrochemical performance of modified TiO2 NTs was investigated. Surface morphology analysis showed formation of uniform and vertically oriented NTs structures with an open tube top and smooth walls. The results of EDX, XRD and XPS analysis proved that RE ions exist as surface compounds (RE3+ oxides). Visible light induced photoactivity (both photocatalytic and photoelectrochemical) is mostly pronounced in the presence of nanotubes obtained by anodic oxidation of Ti90Ho10 alloy. These nanotubes are able to degrade toluene in the gas phase even by irradiation of low-powered light source, such as light emitting diodes (λmax = 465 nm). Photocatalytic test of phenol degradation in the presence of scavenger indicates that photogenerated electrons and superoxide radicals play a meaningful role in the photocatalytic degradation of pollutants under visible irradiation. In addition, the photoelectrochemical tests performed under the influence of visible light irradiation confirmed that the RE-modification of TiO2 NTs caused a significant increase of photocurrent (up to 10 times higher). The new and original results on the preparation of RE2O3/TiO2 nanotubes obtained in one step anodic oxidation and photocatalytic activity in aqueous and gas phases represent an important contribution then will benefit photocatalytic surfaces preparation technologies.

Cytowania

  • 2 8

    CrossRef

  • 0

    Web of Science

  • 3 0

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 83 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Results in Physics nr 12, strony 412 - 423,
ISSN: 2211-3797
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Parnicka P., Mazierski P., Lisowski W., Klimczuk T., Nadolna J., Zaleska-Medynska A.: A new simple approach to prepare rare-earth metals-modified TiO2 nanotube arrays photoactive under visible light: Surface properties and mechanism investigation// Results in Physics -Vol. 12, (2019), s.412-423
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.rinp.2018.11.073
Bibliografia: test
  1. Yun J-H, Wang L, Amal R, Ng Y. One-dimensional TiO 2 nanostructured photo- anodes: from dye-sensitised solar cells to perovskite solar cells. Energies 2016;9:1030. https://doi.org/10.3390/en9121030. otwiera się w nowej karcie
  2. Reddy NL, Kumar S, Krishnan V, Sathish M, Shankar MV. Multifunctional Cu/Ag quantum dots on TiO 2 nanotubes as highly efficient photocatalysts for enhanced solar hydrogen evolution. J Catal 2017;350:226-39. https://doi.org/10.1016/j.jcat. 2017.02.032. otwiera się w nowej karcie
  3. Low J, Qiu S, Xu D, Jiang C, Cheng B. Direct evidence and enhancement of surface plasmon resonance effect on Ag-loaded TiO 2 nanotube arrays for photocatalytic CO 2 reduction. Appl Surf Sci 2018;434:423-32. https://doi.org/10.1016/j.apsusc.2017. 10.194. otwiera się w nowej karcie
  4. Zhang J, Xiao G, Xiao F-X, Liu B. Revisiting one-dimensional TiO 2 based hybrid heterostructures for heterogeneous photocatalysis: a critical review. Mater Chem Front 2017;1:231-50. https://doi.org/10.1039/C6QM00141F. otwiera się w nowej karcie
  5. Laureys A, Claeys L, De Seranno T, Depover T, Van den Eeckhout E, Petrov R, et al. The role of titanium and vanadium based precipitates on hydrogen induced de- gradation of ferritic materials. Mater Charact 2018;144:22-34. https://doi.org/10. 1016/j.matchar.2018.06.030. otwiera się w nowej karcie
  6. Mirhadi SM, Hassanzadeh Nemati N, Tavangarian F, Daliri Joupari M. Fabrication of hierarchical meso/macroporous TiO 2 scaffolds by evaporation-induced self-as- sembly technique for bone tissue engineering applications. Mater Charact 144 2018:35-41. https://doi.org/10.1016/j.matchar.2018.06.035. otwiera się w nowej karcie
  7. Boyjoo Y, Sun H, Liu J, Pareek VK, Wang S. A review on photocatalysis for air treatment: from catalyst development to reactor design. Chem Eng J 2017;310:537-59. https://doi.org/10.1016/j.cej.2016.06.090. otwiera się w nowej karcie
  8. Nischk M, Mazierski P, Wei Z, Siuzdak K, Kouame NA, Kowalska E, et al. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO 2 na- notubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction. Appl Surf Sci 2016;387:89-102. https://doi.org/10.1016/j.apsusc.2016. 06.066. otwiera się w nowej karcie
  9. Elzarka A, Liu N, Hwang I, Kamal M, Schmuki P. Large-diameter TiO 2 nanotubes enable wall engineering with conformal hierarchical decoration and blocking layers for enhanced efficiency in dye-sensitized solar cells (DSSC). Chem -A Eur J 2017;23:12995-9. https://doi.org/10.1002/chem.201702434. otwiera się w nowej karcie
  10. Koo MS, Cho K, Yoon J, Choi W. Photoelectrochemical degradation of organic compounds coupled with molecular hydrogen generation using electrochromic TiO 2 nanotube arrays. Environ Sci Technol 2017;51:6590-8. https://doi.org/10.1021/ acs.est.7b00774. otwiera się w nowej karcie
  11. Oliveira WF, Arruda IRS, Silva GMM, Machado G, Coelho LCBB, Correia MTS. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications. Mater Sci Eng, C 2017;81:597-606. https://doi.org/10.1016/j.msec. 2017.08.017. otwiera się w nowej karcie
  12. Khoshnood N, Zamanian A, Massoudi A. Mussel-inspired surface modification of titania nanotubes as a novel drug delivery system. Mater Sci Eng, C 2017;77:748-54. https://doi.org/10.1016/j.msec.2017.03.293. otwiera się w nowej karcie
  13. Terracciano M, Galstyan V, Rea I, Casalino M, De Stefano L, Sbervegleri G. Chemical modification of TiO 2 nanotube arrays for label-free optical biosensing applications. Appl Surf Sci 2017;419:235-40. https://doi.org/10.1016/j.apsusc.2017.05.029. otwiera się w nowej karcie
  14. Parnicka P, Mazierski P, Grzyb T, Lisowski W, Kowalska E, Ohtani B, et al. Influence of the preparation method on the photocatalytic activity of Nd-modified TiO 2 . otwiera się w nowej karcie
  15. Beilstein J Nanotechnol 2018;9:447-59. https://doi.org/10.3762/bjnano.9.43. otwiera się w nowej karcie
  16. Wei M, Wan J, Hu Z, Peng Z, Wang B, Wang H. Preparation, characterization and visible-light-driven photocatalytic activity of a novel Fe(III) porphyrin-sensitized TiO2nanotube photocatalyst. Appl Surf Sci 2017;391:267-74. https://doi.org/10. 1016/j.apsusc.2016.05.161. otwiera się w nowej karcie
  17. Motola M, Satrapinskyy L, Roch T, Šubrt J, Kupčík J, Klementová M, et al. Anatase TiO 2 nanotube arrays and titania films on titanium mesh for photocatalytic NO X removal and water cleaning. Catal Today 2017;287:59-64. https://doi.org/10. 1016/j.cattod.2016.10.011. otwiera się w nowej karcie
  18. Natarajan TS, Natarajan K, Bajaj HC, Tayade RJ. Energy efficient UV-LED source and TiO 2 nanotube array-based reactor for photocatalytic application. Ind Eng Chem Res 2011;50:7753-62. https://doi.org/10.1021/ie200493k. otwiera się w nowej karcie
  19. Parnicka P, Mazierski P, Grzyb T, Wei Z, Kowalska E, Ohtani B, et al. Preparation and photocatalytic activity of Nd-modified TiO 2 photocatalysts: insight into the excitation mechanism under visible light. J Catal 2017;353:211-22. https://doi. org/10.1016/j.jcat.2017.07.017. otwiera się w nowej karcie
  20. Reszczyńska J, Grzyb T, Wei Z, Klein M, Kowalska E, Ohtani B, et al. Photocatalytic activity and luminescence properties of RE 3+ -TiO 2 nanocrystals prepared by sol-gel and hydrothermal methods. Appl Catal B Environ 2016;181:825-37. https://doi. org/10.1016/j.apcatb.2015.09.001. otwiera się w nowej karcie
  21. Nie J, Mo Y, Zheng B, Yuan H, Xiao D. Electrochemical fabrication of lanthanum- doped TiO 2 nanotube array electrode and investigation of its photoelectrochemical capability. Electrochim Acta 2013;90:589-96. https://doi.org/10.1016/j.electacta. 2012.12.049. otwiera się w nowej karcie
  22. Fan X, Wan J, Liu E, Sun L, Hu Y, Li H, et al. High-efficiency photoelectrocatalytic hydrogen generation enabled by Ag deposited and Ce doped TiO 2 nanotube arrays. Ceram Int 2015;41:5107-16. https://doi.org/10.1016/j.ceramint.2014.12.083. otwiera się w nowej karcie
  23. Li Y, Wang Y, Kong J, Wang J. Synthesis and photocatalytic activity of TiO 2 na- notubes co-doped by erbium ions. Appl Surf Sci 2015;328:115-9. https://doi.org/ 10.1016/j.apsusc.2014.12.054. otwiera się w nowej karcie
  24. Mazierski P, Lisowski W, Grzyb T, Winiarski MJ, Klimczuk T, Mikołajczyk A, et al. Enhanced photocatalytic properties of lanthanide-TiO 2 nanotubes: an experimental and theoretical study. Appl Catal B Environ 2017;205:376-85. https://doi.org/10. 1016/j.apcatb.2016.12.044. otwiera się w nowej karcie
  25. Shrestha NK, Nah Y-C, Tsuchiya H, Schmuki P. Self-organized nano-tubes of TiO 2 -MoO 3 with enhanced electrochromic properties. Chem Commun (2009) 2008. https://doi.org/10.1039/b820953g. otwiera się w nowej karcie
  26. Aldabergenova SB, Ghicov A, Albu S, Macak JM, Schmuki P. Smooth titania na- notubes: Self-organization and stabilization of anatase phase. J Non Cryst Solids 2008;354:2190-4. https://doi.org/10.1016/j.jnoncrysol.2007.10.037. otwiera się w nowej karcie
  27. Mishra T, Wang L, Hahn R, Schmuki P. In-situ Cr doped anodized TiO 2 nanotubes with increased photocurrent response. Electrochim Acta 2014;132:410-5. https:// doi.org/10.1016/j.electacta.2014.03.101. otwiera się w nowej karcie
  28. Yasuda K, Schmuki P. Control of morphology and composition of self-organized zirconium titanate nanotubes formed in (NH 4 ) 2 SO 4 /NH 4 F electrolytes. Electrochim Acta 2007;52:4053-61. https://doi.org/10.1016/j.electacta.2006.11.023. otwiera się w nowej karcie
  29. Tsuchiya H, Berger S, Macak JM, Ghicov A, Schmuki P. Self-organized porous and tubular oxide layers on TiAl alloys. Electrochem Commun 2007;9:2397-402. https://doi.org/10.1016/j.elecom.2007.07.013. otwiera się w nowej karcie
  30. Luz AR, Santos LS, Lepienski CM, Kuroda PB, Kuromoto NK. Characterization of the morphology, structure and wettability of phase dependent lamellar and nanotube oxides on anodized Ti-10Nb alloy. Appl Surf Sci 2018;448:30-40. https://doi.org/ 10.1016/j.apsusc.2018.04.079. otwiera się w nowej karcie
  31. Hang R, Liu Y, Gao A, Zong M, Bai L, Zhang X, et al. Fabrication of Ni-Ti-O na- noporous film on NiTi alloy in ethylene glycol containing NaCl. Surf Coatings Technol 2017;321:136-45. https://doi.org/10.1016/j.surfcoat.2017.04.036. otwiera się w nowej karcie
  32. Yang M, Zhang L, Jin B, Huang L, Gan Y. Enhanced photoelectrochemical properties and water splitting activity of self-ordered MoO 3 -TiO 2 nanotubes. Appl Surf Sci 2016;364:410-5. https://doi.org/10.1016/j.apsusc.2015.12.157. otwiera się w nowej karcie
  33. Ning X, Wang X, Yu X, Li J, Zhao J. Preparation and capacitance properties of Mn- doped TiO 2 nanotube arrays by anodisation of Ti-Mn alloy. J Alloy Compd 2016;658:177-82. https://doi.org/10.1016/j.jallcom.2015.10.204. otwiera się w nowej karcie
  34. Roy P, Berger S, Schmuki P. TiO 2 nanotubes: synthesis and applications. Angew Chem -Int Ed 2011;50:2904-39. https://doi.org/10.1002/anie.201001374. otwiera się w nowej karcie
  35. Bhethanabotla VC, Russell DR, Kuhn JN. Assessment of mechanisms for enhanced performance of Yb/Er/titania photocatalysts for organic degradation: role of rare earth elements in the titania phase. Appl Catal B Environ 2017;202:156-64. https:// doi.org/10.1016/j.apcatb.2016.09.008. otwiera się w nowej karcie
  36. Zhao X, Wu P, Liu M, Lu D, Ming J, Li C, et al. Y 2 O 3 modified TiO 2 nanosheets enhanced the photocatalytic removal of 4-chlorophenol and Cr (VI) in sun light. otwiera się w nowej karcie
  37. Appl Surf Sci 2017;410:134-44. https://doi.org/10.1016/j.apsusc.2017.03.073. otwiera się w nowej karcie
  38. Touati A, Hammedi T, Najjar W, Ksibi Z, Sayadi S. Photocatalytic degradation of textile wastewater in presence of hydrogen peroxide: Effect of cerium doping ti- tania. J Ind Eng Chem 2016;35:36-44. https://doi.org/10.1016/j.jiec.2015.12.008. otwiera się w nowej karcie
  39. Ye QL, Yang X, Li C, Li Z. Synthesis of UV/NIR photocatalysts by coating TiO2 shell on peanut-like YF 3 :Yb, Tm upconversion nanocrystals. Mater Lett 2013;106:238-41. https://doi.org/10.1016/j.matlet.2013.05.047. otwiera się w nowej karcie
  40. Anastas J, Zimmerman PT. Design through the twelve principles of green en- gineering. Env Sci Tech 2003;37:94-101. otwiera się w nowej karcie
  41. Mazierski P, Nadolna J, Lisowski W, Winiarski MJ, Gazda M, Nischk M, et al. Effect of irradiation intensity and initial pollutant concentration on gas phase photo- catalytic activity of TiO 2 nanotube arrays. Catal Today 2017;284:19-26. https:// doi.org/10.1016/j.cattod.2016.09.004. otwiera się w nowej karcie
  42. Sulka GD, Kapusta-Kołodziej J, Brzózka A, Jaskuła M. Anodic growth of TiO 2 na- nopore arrays at various temperatures. Electrochim Acta 2013;104:526-35. https:// doi.org/10.1016/j.electacta.2012.12.121. otwiera się w nowej karcie
  43. Lee K, Mazare A, Schmuki P. One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 2014;114:9385-454. https://doi.org/10.1021/cr500061m. otwiera się w nowej karcie
  44. Hang R, Liu Y, Gao A, Bai L, Huang X, Zhang X, et al. Highly ordered Ni-Ti-O nanotubes for non-enzymatic glucose detection. Mater Sci Eng, C 2015;51:37-42. https://doi.org/10.1016/j.msec.2015.02.027. otwiera się w nowej karcie
  45. Mazierski P, Malankowska A, Kobylański M, Diak M, Kozak M, Winiarski MJ, et al. Photocatalytically active TiO 2 /Ag 2 O nanotube arrays interlaced with silver nano- particles obtained from the one-step anodic oxidation of Ti-Ag alloys. ACS Catal 2017;7:2753-64. https://doi.org/10.1021/acscatal.7b00056. otwiera się w nowej karcie
  46. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW. Application of doped photocatalysts for organic pollutant degradation -a review. J Environ Manage 2017;198:78-94. https://doi.org/10.1016/j.jenvman.2017.04.099. otwiera się w nowej karcie
  47. Ozkan S, Truong N, Mazare A, Cerri I, Schmuki P. Controlled spacing of self-or- ganized anodic TiO 2 nanotubes. Electrochem Commun 2016;69:76-9. https://doi. org/10.1016/j.elecom.2016.06.004. otwiera się w nowej karcie
  48. Madian M, Klose M, Jaumann T, Gebert A, Oswald S, Ismail N, et al. Anodically fabricated TiO 2 -SnO 2 nanotubes and their application in lithium ion batteries. J Mater Chem A 2016;4:5542-52. https://doi.org/10.1039/c6ta00182c. otwiera się w nowej karcie
  49. Minagar S, Li Y, Berndt CC, Wen C. The influence of titania-zirconia-zirconium ti- tanate nanotube characteristics on osteoblast cell adhesion. Acta Biomater 2015;12:281-9. https://doi.org/10.1016/j.actbio.2014.10.037. otwiera się w nowej karcie
  50. Kim WG, Choe HC, Ko YM, Brantley WA. Nanotube morphology changes for Ti-Zr alloys as Zr content increases. Thin Solid Films 2009;517:5033-7. https://doi.org/ 10.1016/j.tsf.2009.03.165. otwiera się w nowej karcie
  51. Lai YK, Sun L, Chen C, Nie CG, Zuo J, Lin CJ. Optical and electrical characterization of TiO 2 nanotube arrays on titanium substrate. Appl Surf Sci 2005;252:1101-6. https://doi.org/10.1016/j.apsusc.2005.02.035. otwiera się w nowej karcie
  52. Knorr FJ, Mercado CC, Mchale JL. Trap-state distributions and carrier transport in pure and mixed-phase TiO 2 : influence of contacting solvent and interphasial elec- tron transfer. J Phys Chem C 2008;112:12786-94. https://doi.org/10.1021/ jp8039934. otwiera się w nowej karcie
  53. Tang H, Berger H, Schmid PE, Levy F. Optical properties of anatase (TiO 2 ). Pergamon Solid State Commun 1994;92:267-71. https://doi.org/10.1016/0038- 1098(94)90889-3. otwiera się w nowej karcie
  54. Zhao H, Pan F, Li Y. A review on the effects of TiO 2 surface point defects on CO 2 photoreduction with H2O. J Mater 2017;3:17-32. https://doi.org/10.1016/j.jmat. 2016.12.001. otwiera się w nowej karcie
  55. Regonini D, Bowen CR, Jaroenworaluck A, Stevens R. A review of growth me- chanism, structure and crystallinity of anodized TiO 2 nanotubes. Mater Sci Eng R Reports 2013;74:377-406. https://doi.org/10.1016/j.mser.2013.10.001. otwiera się w nowej karcie
  56. Valota A, LeClere DJ, Hashimoto T, Skeldon P, Thompson GE, Berger S, et al. The efficiency of nanotube formation on titanium anodized under voltage and current control in fluoride/glycerol electrolyte. Nanotechnology 2008;19. https://doi.org/ 10.1088/0957-4484/19/35/355701. otwiera się w nowej karcie
  57. Pfau A, Schierbaum K-D. The electronic structure of stoichiometric and reduced CeO 2 surfaces: an XPS, UPS and HREELS study. Surf Sci 1994;6028. https://doi.org/ 10.1016/0039-6028(94)90027-2. otwiera się w nowej karcie
  58. Chowdhury S, Lin KS. Characterization and surface reactivity analyses of ceria nanorod catalyst for methanol interaction. Mater Chem Phys 2012;133:163-9. https://doi.org/10.1016/j.matchemphys.2012.01.002. otwiera się w nowej karcie
  59. Armelao L. Plasma-enhanced CVD CeO 2 nanocrystalline thin films analyzed by XPS. Surf Sci Spectra 2001;8:247. https://doi.org/10.1116/11.20020601. otwiera się w nowej karcie
  60. Krawczyk M, Holdynski M, Lisowski W, Sobczak JW, Jablonski A. Electron inelastic mean free paths in cerium dioxide. Appl Surf Sci 2015;341:196-202. https://doi. org/10.1016/j.apsusc.2015.02.177. otwiera się w nowej karcie
  61. Naumkin AV, Kraut-Vass A, Powell CJ, Gaarenstroom SW, National Institute of Standards and Technology (U.S.), NIST X-ray photoelectron spectroscopy database, (2012). http://srdata.nist.gov/xps/Default.aspx.
  62. Yurii AT, Anton Yu T. Structure of X-ray photoelectron spectra of lanthanide compounds. Russ Chem Rev 2002;71:347. https://doi.org/10.1070/ RC2002v071n05ABEH000717. otwiera się w nowej karcie
  63. Ulrich MD, Rowe JE, Niu D, Parsons GN. Bonding and structure of ultrathin yttrium oxide films for Si field effect transistor gate dielectric applications. J Vac Sci Technol B Microelectron Nanom Struct 2003;21:1792. https://doi.org/10.1116/1. 1593647. otwiera się w nowej karcie
  64. Pan T-M, Lu C-H, Mondal S, Ko F-H. Resistive switching characteristics of Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 -based metal-insulator-metal memory devices. IEEE Trans Nanotechnol 2012;11:1040-6. https://doi.org/10.1109/TNANO.2012.2211893. otwiera się w nowej karcie
  65. Lazǎr C, Burzo E, Neumann M. XPS study of RNi 4 B compounds, where R = Nd, Tb, Dy, Ho and Er. J Optoelectron Adv Mater 2008;10:780-2.
  66. Reszczyńska J, Grzyb T, Sobczak JW, Lisowski W, Gazda M, Ohtani B, et al. Visible light activity of rare earth metal doped (Er 3+ , Yb 3+ or Er 3+ /Yb 3+ ) titania photo- catalysts. Appl Catal B Environ 2015;163:40-9. https://doi.org/10.1016/j.apcatb. 2014.07.010. otwiera się w nowej karcie
  67. Cui J, Hope GA, Buckley AN. Spectroscopic investigation of the interaction of hy- droxamate with bastnaesite (cerium) and rare earth oxides. Miner Eng 2012;36-38:91-9. https://doi.org/10.1016/j.mineng.2012.03.001. otwiera się w nowej karcie
  68. Wojcieszak APD, Mazur M, Kaczmarek D, Morgiel J, Domaradzki ACJ. Influence of nanocrystalline structure and surface properties of TiO 2 : Nd thin films. Pol J Chem Tech 2012;14:1-7. https://doi.org/10.1515/pjct-2015-0047. otwiera się w nowej karcie
  69. Ahmaruzzaman M. Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 2008;143:48-67. https://doi.org/10.1016/j.cis. 2008.07.002. otwiera się w nowej karcie
  70. Cruz Silvia L, Rivera-García María Teresa, Woodward JJ. Review of toluene action: clinical evidence, animal studies and molecular targets. J Drug Alcohol Res 2014:1-15. https://doi.org/10.4303/jdar/235840.Review. otwiera się w nowej karcie
  71. Liu B, Nakata K, Liu S, Sakai M, Ochiai T, Murakami T, et al. Theoretical kinetic analysis of heterogeneous photocatalysis by TiO 2 nanotube arrays: the effects of nanotube geometry on photocatalytic activity. J Phys Chem C 2012;116:7471-9. https://doi.org/10.1021/jp300481a. otwiera się w nowej karcie
  72. Pasikhani JV, Gilani N, Pirbazari AE. The correlation between structural properties, geometrical features, and photoactivity of freestanding TiO 2 nanotubes in com- parative degradation of 2,4-dichlorophenol and methylene blue. Mater Res Express 2018;5:25016. https://doi.org/10.1088/2053-1591/aaaa34. otwiera się w nowej karcie
  73. Ohtani B. Preparing articles on photocatalysis-beyond the illusions, misconcep- tions, and speculation. Chem Lett 2008;37:216-29. https://doi.org/10.1246/cl. 2008.216. otwiera się w nowej karcie
  74. Saylor GL, Chen L, Kupferle MJ. Time varying toxicity of effluents from the elec- trochemical oxidation of phenol. Procedia Environ Sci 2013;18:451-63. https://doi. org/10.1016/j.proenv.2013.04.061. otwiera się w nowej karcie
  75. Obregón S, Kubacka A, Fernández-García M, Colón G. High-performance Er 3+ -TiO 2 system: dual up-conversion and electronic role of the lanthanide. J Catal 2013;299:298-306. https://doi.org/10.1016/j.jcat.2012.12.021. otwiera się w nowej karcie
  76. Dong G, Wang X, Chen Z, Lu Z. Enhanced photocatalytic activity of vacuum-acti- vated TiO 2 induced by oxygen vacancies. Photochem Photobiol 2018;2. https://doi. org/10.1111/php.12874. otwiera się w nowej karcie
  77. Nevárez-Martínez M, Kobylański M, Mazierski P, Wółkiewicz J, Trykowski G, Malankowska A, et al. Self-organized TiO2-MnO 2 nanotube arrays for efficient photocatalytic degradation of toluene. Molecules 2017;22:564. https://doi.org/10. 3390/molecules22040564. otwiera się w nowej karcie
  78. Nevárez-Martínez MC, Mazierski P, Kobylański MP, Szczepańska G, Trykowski G, Malankowska A, et al. Growth, structure, and photocatalytic properties of hier- archical V 2 O 5 -TiO 2 nanotube arrays obtained from the one-step anodic oxidation of Ti-V alloys. Molecules 2017;22. https://doi.org/10.3390/molecules22040580. otwiera się w nowej karcie
  79. Klein M, Nadolna J, Gołabiewska A, Mazierski P, Klimczuk T, Remita H, et al. The effect of metal cluster deposition route on structure and photocatalytic activity of mono-and bimetallic nanoparticles supported on TiO 2 by radiolytic method. Appl Surf Sci 2016;378:37-48. https://doi.org/10.1016/j.apsusc.2016.03.191. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 306 razy

Publikacje, które mogą cię zainteresować

Meta Tagi