Application of Bayesian Networks in risk diagnostics arising from the degree of urban regeneration area degradation
Abstrakt
Urban regeneration as a complex project, generates many extremely specific threats affecting the increase of investment risk. Its unique nature causes that probability parameter, normally applied in the process of risk quantification, is extremely difficult to estimate. Due to lack of historical data urban regeneration related activities are therefore associated with uncertainty. According to the authors, a useful tool for resolving the above issues may prove to be Bayesian networks (BN). Beliefs based on expert knowledge should be considered as a subjective measure, nevertheless BN also allow to combine this information with objective results of conducted research. The authors built a model representing various urban regeneration risk areas, where the analysis covers degradation of the urban regeneration area. The article also presents selected parameters allowing for diagnostics of technical condition of buildings, road pavement and underground infrastructure in the area of urban regeneration.
Autorzy (3)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Aktywność konferencyjna
- Typ:
- materiały konferencyjne indeksowane w Web of Science
- Tytuł wydania:
- Baltic Geodetic Congress (Geomatics) 2017 strony 49 - 50
- Język:
- angielski
- Rok wydania:
- 2017
- Opis bibliograficzny:
- Apollo M., Grzyl B., Miszewska E..: Application of Bayesian Networks in risk diagnostics arising from the degree of urban regeneration area degradation, W: Baltic Geodetic Congress (Geomatics) 2017, 2017, Polish Internet,.
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 123 razy
Publikacje, które mogą cię zainteresować
Condition-Based Monitoring of DC Motors Performed with Autoencoders
- K. Włódarczak,
- Ł. Grzymkowski,
- T. Stefański