Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer - Publikacja - MOST Wiedzy

Wyszukiwarka

Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer

Abstrakt

Optical methods of measurement do not require contact of a probe and the object under study, and thus have found use in a broad range of applications such as nondestructive testing (NDT), where noninvasive measurement is crucial. Measuring the refractive index of a material can give a valuable insight into its composition. Low‑coherence radiation sources enable measurement of the sample’s properties across a wide spectrum, while simultaneously measuring the absolute value of optical path difference between interfering waves, which is necessary to calculate the refractive index. The measurement setup used in this study consists of a fiber‑based Fabry‑Perot interferometer, illuminated by a low‑coherence infrared source. The samples under measurement are located in the cavity of the interferometer, and their transmission spectra are recorded using an optical spectrum analyzer. Additional reference measurements are performed with the cavity filled with air, in order to precisely measure the geometrical length of the cavity. The purpose of the study was to develop a digital signal processing algorithm to improve the resolution of analysis of the spectra of radiation measured at the output of the interferometer. This goal was achieved by decreasing the broadening of the signal in the Fourier domain caused by dispersion of the medium filling the cavity. The Fractional Fourier Transform is a generalization of the Fourier transform allowing arbitrary rotation of the signal in the time-frequency domain, allowing more precise analysis of signals with variable frequency. This property makes this transformation a valuable tool for the analysis of interferometric signals obtained from measurements of dispersive media, as the variable rate of change of the optical path length with respect to wavenumber in such media results in varying frequency of the modulation of measured spectra. The optical path difference inside the material under measurement is used together with the geometrical length obtained from the reference measurement in order to determine the refractive index. The parameters of the transformation are found by iterative adjustment to the signal under analysis. The developed algorithm was tested using both real measured spectra and simulated signals based on a theoretical model of the interferometric setup, and its effectiveness was compared to previously used methods of analysis. (...)

Cytowania

  • 0

    CrossRef

  • 0

    Web of Science

  • 0

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 160 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2017 SPIE)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
materiały konferencyjne indeksowane w Web of Science
Tytuł wydania:
Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017 strony 1 - 9
ISSN:
0277-786X
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Mrotek M., Pluciński J..: Application of the Fractional Fourier Transform for dispersion compensation in signals from a fiber-based Fabry-Perot interferometer, W: Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 2017, ,.
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1117/12.2281017
Bibliografia: test
  1. Wierzba, P., Jędrzejewska-Szczerska, M., Optimization of a Fabry-Perot Sensing Interferometer Design for an Optical Fiber Sensor of Hematocrit Level, Acta Physica Polonica A, 124 (3), 586-588 (2013). otwiera się w nowej karcie
  2. Milewska, D., Karpienko, K., Jędrzejewska-Szczerska, M., Application of thin diamond films in low-coherence fiber-optic Fabry-Pérot displacement sensor, Diamond and Related Materials, vol.64, 169-176 (2016). otwiera się w nowej karcie
  3. Majchrowicz, D., Hirsch, M., Wierzba, P., Bechelany, M., Viter, R., Jędrzejewska-Szczerska, M., Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers SENSORS, vol.16, 416 (2016). otwiera się w nowej karcie
  4. Mrotek, M., Analiza sygnału pomiarowego z interferometru niskokoherencyjnego, master's thesis (2016).
  5. Ozaktas, H. M., Zalevsky, Z., Kutay, M. A., The Fractional Fourier Transform with Applications in Optica and Signal Processing, Wiley Series in Pure and Applied Optics (2001).
  6. Ozaktas, H. M., Arikan, O., Kutay, M. A., Bozdagi, G., Digital Computation of the Fractional Fourier Transform, IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 44, NO. 9 (SEPTEMBER 1996). otwiera się w nowej karcie
  7. Pluciński, J., Karpienko, K., Fiber optic Fabry-Pérot sensors: modeling versus measurements results, Proc. SPIE 10034, 11th Conference on Integrated Optics: Sensors, Sensing Structures, and Methods, 100340H (September 2, 2016). otwiera się w nowej karcie
  8. Pluciński, J., Karpienko, K., Response of a fiber-optic Fabry-Pérot interferometer to refractive index and absorption changes: modeling and experiments, Proc. SPIE 10161, 14th International Conference on Optical and Electronic Sensors, 101610F (10 November 2016). otwiera się w nowej karcie
  9. Ciddor, P. E., Refractive index of air: new equations for the visible and near infrared, Appl. Optics 35, 1566-1573 (1996). otwiera się w nowej karcie
  10. Hale, G. M., Querry, M. R., Optical constants of water in the 200-nm to 200-µm wavelength region, Appl. Opt. 12, 555-563 (1973). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 111 razy

Publikacje, które mogą cię zainteresować

Meta Tagi