Artificial intelligence models in prediction of response to cardiac resynchronization therapy: a systematic review
Abstrakt
The aim of the presented review is to summarize the literature data on the accuracy and clinical applicability of artificial intelligence (AI) models as a valuable alternative to the current guidelines in predicting cardiac resynchronization therapy (CRT) response and phenotyping of patients eligible for CRT implantation. This systematic review was performed according to the PRISMA guidelines. After a search of Scopus, PubMed, Cochrane Library, and Embase databases, 675 records were identified. Twenty supervised (prediction of CRT response) and 9 unsupervised (clustering and phenotyping) AI models were analyzed qualitatively (22 studies, 14,258 patients). Fifty-five percent of AI models were based on retrospective studies. Unsupervised AI models were able to identify clusters of patients with significantly different rates of primary outcome events (death, heart failure event). In comparison to the guideline-based …
Cytowania
Autorzy (7)
Cytuj jako
Pełna treść
pełna treść publikacji nie jest dostępna w portalu
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- Publikacja w czasopiśmie
- Opublikowano w:
-
HEART FAILURE REVIEWS
ISSN: 1382-4147 - Rok wydania:
- 2023
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) https://doi.org/10.1007/s10741-023-10357-8
- Weryfikacja:
- Brak weryfikacji
wyświetlono 24 razy
Publikacje, które mogą cię zainteresować
Monitoring of CRT by means of impedance multiple measurements - simulation studies
- M. Lewandowska,
- J. Wtorek,
- A. Bujnowski
- + 1 autorów
2010
Artificial intelligence for biomedical engineering of polysaccharides: A short overview.
- H. Shokrani,
- A. Shokrani,
- F. Seidi
- + 4 autorów
2023