Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application - Publikacja - MOST Wiedzy

Wyszukiwarka

Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application

Abstrakt

Wireless power transfer devices are becoming more relevant and widespread. Therefore, an article is devoted to a review, analysis and comparison of compensation topologies for an inductive power transfer. A new classification of topologies is developed. A lot of attention is paid to the problems of the physical fundamentals of compensation work, standards, safety, and five main topology requirements. It is determined, that topologies with the series primary compensating are the most effective in the IPT for charging devices among the four classical schemes. The series-parallel solution is recommended in case of the low output voltage, minimum size of a secondary side coil is achievable. The series-series solution does not depend on the magnetic coupling coefficient and the load on the resonance frequency. For the convenience of displaying and understanding the information, the comparison results are listed in the tables, graphs and dependencies. The main suitable topologies for a certain application are defined. The given conclusions provide a “one-stop” information source and a selection guide on the application of compensation topologies both in terms of devices and in terms of power level that is the main value of this paper. During literature analysis and recent trends in the market for wireless power transmission devices, the main possible further ways of developing topologies are underlined. First of all, it concerns increasing the frequency of resonance of compensation topologies, the use of multilevel / multi-pulse / multicoils structures, the study of existing high-frequency semiconductors and the development of the semiconductor and magnetic materials.

Cytowania

  • 1 1 8

    CrossRef

  • 0

    Web of Science

  • 1 1 3

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 1200 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
IEEE Access nr 7, strony 120559 - 120580,
ISSN: 2169-3536
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Shevchenko V., Husev O., Strzelecki R., Pakhaliuk B., Poliakov N., Strzelecka N.: Compensation Topologies in IPT Systems: Standards, Requirements, Classification, Analysis, Comparison and Application// IEEE Access -Vol. 7, (2019), s.120559-120580
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1109/access.2019.2937891
Bibliografia: test
  1. C. Xia, Y. Zhou, J. Zhang, and C. Li, ''Comparison of power transfer characteristics between CPT and IPT system and mutual inductance optimization for IPT system,'' J. Comput., vol. 7, no. 11, pp. 2734-2741, 2012. otwiera się w nowej karcie
  2. F. Musavi and W. Eberle, ''Overview of wireless power transfer technolo- gies for electric vehicle battery charging,'' IET Power Electron., vol. 7, no. 1, pp. 60-66, Jan. 2014. otwiera się w nowej karcie
  3. I. Korotyeyev, I. V. Pentegov, R. Strzelecki, and I. V. Volkov, ''Badanie procesów tesli w wybranych układach prostownikowych,'' in Proc. Pod- stawowe Problemy Energoelektroniki Elektromechaniki (PPEE), Materi- ały Sympozjum, Wisła, Polska, 2000, pp. 375-378.
  4. X. Lu, P. Wang, D. Niyato, D. I. Kim, and Z. Han, ''Wireless charging technologies: Fundamentals, standards, and network applications,'' IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1413-1452, 2nd Quart., 2016. otwiera się w nowej karcie
  5. J. D. Jackson, Classical Electrodynamics, 3rd ed. New York, NY, USA: Wiley, 1999. otwiera się w nowej karcie
  6. M. H. Ameri, A. Y. Varjani, and M. Mohamadian, ''A new maximum inductive power transmission capacity tracking method,'' J. Power Elec- tron., vol. 16, no. 6, pp. 2202-2211, Nov. 2016. otwiera się w nowej karcie
  7. D. Patil, M. K. McDonough, J. M. Miller, B. Fahimi, and P. T. Balsara, ''Wireless power transfer for vehicular applications: Overview and challenges,'' IEEE Trans. Transport. Electrific., vol. 4, no. 1, pp. 3-37, Mar. 2018. otwiera się w nowej karcie
  8. Z. U. Zahid, C. Zheng, R. Chen, W. E. Faraci, J.-S. J. Lai, M. Senesky, and D. Anderson, ''Design and control of a single-stage large air-gapped transformer isolated battery charger for wide-range output voltage for EV applications,'' in Proc. IEEE Energy Convers. Congr. Expo., Denver, CO, USA, Sep. 2013, pp. 5481-5487. otwiera się w nowej karcie
  9. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, ''Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers,'' IEEE Trans. Power Electron., vol. 24, no. 7, pp. 1819-1825, Jul. 2009. otwiera się w nowej karcie
  10. W. Zhang and C. C. Mi, ''Compensation topologies of high-power wire- less power transfer systems,'' IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4768-4778, Jun. 2015. otwiera się w nowej karcie
  11. T. Kan, T.-D. Nguyen, J. C. White, R. K. Malhan, and C. C. Mi, ''A new integration method for an electric vehicle wireless charging system using LCC compensation topology: Analysis and design,'' IEEE Trans. Power Electron., vol. 32, no. 2, pp. 1638-1650, Feb. 2017. otwiera się w nowej karcie
  12. Wireless Power Transfer for Light-Duty Plug-in/Electric Vehicles and Alignment Methodology, Standard J2954_201904, SAE, 2016. [Online]. otwiera się w nowej karcie
  13. D. Kettles, Electric Vehicle Charging Technology Analysis And Standards, Standard FSEC-CR-1996-15, 2015. [Online]. Available: http://www.fsec.ucf.edu/en /publications/pdf/FSEC-CR-1996-15.pdf
  14. On-Line Electric Vehicle (OLEV) Project and Vehicular Wireless Power Transfer Technology. [Online]. Available: http://greentechlatvia.eu/ wp-content/uploads/bsk-pdf-manager/2-5a_OLEV_Project_and_ otwiera się w nowej karcie
  15. Technology_(Ahn)_rev_a_15.pdf otwiera się w nowej karcie
  16. X. Lu, D. Niyato, P. Wang, D. I. Kim, and Z. Han, ''Wireless charger net- working for mobile devices: Fundamentals, standards, and applications,'' IEEE Wireless Commun., vol. 22, no. 2, pp. 126-135, Apr. 2015. otwiera się w nowej karcie
  17. Qi [Electronic Resource].
  18. Wireless Power Consortium. [Online]. Avail- able: https://www.wirelesspowerconsortium.com otwiera się w nowej karcie
  19. K. Finkenzeller, RFID Handbook, 2nd ed. New York, NY, USA: Wiley, 2003, pp. 161-181. otwiera się w nowej karcie
  20. K. Tomita, R. Shinoda, T. Kuroda, and H. Ishikuro, ''1-W 3.3-16.3-V boosting wireless power transfer circuits with vector summing power controller,'' IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2576-2585, Nov. 2012. otwiera się w nowej karcie
  21. M. A. Houran, X. Yang, and W. Chen, ''Magnetically coupled resonance WPT: Review of compensation topologies, resonator structures with mis- alignment, and EMI diagnostics,'' Electronics, vol. 7, no. 11, p. 296, 2018.
  22. R. Tseng, B. von Novak, S. Shevde, and K. A. Grajski, ''Introduction to the alliance for wireless power loosely-coupled wireless power transfer system specification version 1.0,'' in Proc. IEEE Wireless Power Transf. (WPT), Perugia, Italy, May 2013, pp. 79-83. otwiera się w nowej karcie
  23. C. T. Rim, Practical Design of Wireless Electric Vehicles: Dynamic & Stationary Charging Technologies. 2017. otwiera się w nowej karcie
  24. Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications. [Online]. Available: https://www.transit.dot.gov/ sites/fta.dot.gov/files/FTA_Report_No._0060.pdf otwiera się w nowej karcie
  25. International Commission on Non-Ionizing Radiation Protection, ''Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz),'' Health Phys., vol. 99, no. 6, pp. 818-836, 2010. otwiera się w nowej karcie
  26. M. Song, P. Belov, and P. Kapitanova, ''Wireless power transfer inspired by the modern trends in electromagnetics,'' Appl. Phys. Rev., vol. 4, no. 2, 2017, Art. no. 021102. otwiera się w nowej karcie
  27. IEEE Standard for Military Workplaces-Force Health Protection Regard- ing Personnel Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE Standard C95.1-2345, May 2014. otwiera się w nowej karcie
  28. K. Aditya and S. S. Williamson, ''Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging-A comprehensive review,'' in Proc. IEEE Transp. Electrific. Conf. Expo (ITEC), Dearborn, MI, USA, Jun. 2014, pp. 1-6. otwiera się w nowej karcie
  29. R. C. Fernandes and A. A. de Oliveira, ''Theoretical bifurcation bound- aries for Wireless Power Transfer converters,'' in Proc. IEEE 13th Brazilian Power Electron. Conf. 1st Southern Power Electron. Conf. (COBEP/SPEC), Fortaleza, Brazil, Nov./Dec. 2015, pp. 1-4. otwiera się w nowej karcie
  30. C.-S. Wang, G. A. Covic, and O. H. Stielau, ''Power transfer capability and bifurcation phenomena of loosely coupled inductive power trans- fer systems,'' IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, Feb. 2004. otwiera się w nowej karcie
  31. G. B. Joun and B. H. Cho, ''An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous trans- former,'' IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1013-1022, Nov. 1998.
  32. T. Bieler, M. Perrottet, V. Nguyen, and Y. Perriard, ''Contactless power and information transmission,'' in Proc. IEEE-IAS Annu. Meeting Conf. Rec., vol. 1, Sep./Oct. 2001, pp. 83-88. otwiera się w nowej karcie
  33. H. Sakamoto, K. Harada, S. Washimiya, K. Takehara, Y. Matsuo, and F. Nakao, ''Large air-gap coupler for inductive charger [for electric vehicles],'' IEEE Trans. Magn., vol. 35, no. 5, pp. 3526-3528, Sep. 1999. otwiera się w nowej karcie
  34. J. Lukacs, M. Kiss, I. Nagy, G. Gonter, R. Hadik, K. Kaszap, and A. Tarsoly, ''Inductive energy collection for electric vehicles,'' in Proc. 4th Power Electron. Conf., Budapest, Hungary, 1981, pp. 71-81.
  35. K. Lashkari, S. E. Schladover, and E. H. Lechner, ''Inductive power transfer to an electric vehicle,'' in Proc. 8th Int. Vehicle Symp., 1986, pp. 258-267.
  36. J. M. Barnard, J. A. Ferreira, and J. D. van Wyk, ''Sliding transformers for linear contactless power delivery,'' IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 774-779, Dec. 1997. otwiera się w nowej karcie
  37. H. Abe, H. Sakamoto, and K. Harada, ''A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,'' IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, Mar. 2000. otwiera się w nowej karcie
  38. A. Kawamura, K. Ishioka, and J. Hirai, ''Wireless transmission of power and information through one high frequency resonant AC link inverter for robot manipulator applications,'' in Proc. 13th IEEE Ind. Appl. Conf. Meeting Conf. Rec. (IAS), vol. 3, Oct. 1995, pp. 2367-2372. otwiera się w nowej karcie
  39. A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljačić, ''Wireless power transfer via strongly coupled magnetic resonances,'' Science, vol. 317, no. 5834, pp. 83-86, Jun. 2007. otwiera się w nowej karcie
  40. F. Liu, Z. Zhao, K. Chen, J. Nie, Y. Zhang, and L. Yuan, ''Comparative study of current control methods for a 5 kW wireless EV charging sys- tem,'' in Proc. IEEE 2nd Annu. Southern Power Electron. Conf. (SPEC), Auckland, New Zealand, Dec. 2016, pp. 1-5. otwiera się w nowej karcie
  41. R. Bosshard, J. W. Kolar, and B. Wunsch, ''Accurate finite-element modeling and experimental verification of inductive power transfer coil design,'' in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Fort Worth, TX, USA, Mar. 2014, pp. 1648-1653. otwiera się w nowej karcie
  42. R. Bosshard, J. W. Kolar, J. Mühlethaler, I. Stevanović, B. Wunsch, and F. Canales, ''Modeling and η-α-Pareto optimization of inductive power transfer coils for electric vehicles,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 50-64, Mar. 2015. otwiera się w nowej karcie
  43. Y. H. Sohn, B. H. Choi, E. S. Lee, G. C. Lim, G. H. Cho, and C. T. Rim, ''General unified analyses of two-capacitor inductive power transfer systems: Equivalence of current-source SS and SP compensa- tions,'' IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6030-6045, Nov. 2015. otwiera się w nowej karcie
  44. A. J. Moradewicz and M. P. Kazmierkowski, ''Contactless energy transfer system with FPGA-controlled resonant converter,'' IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3181-3190, Sep. 2010. otwiera się w nowej karcie
  45. O. H. Stielau and G. A. Covic, ''Design of loosely coupled induc- tive power transfer systems,'' in Proc. Int. Conf. Power Syst. Technol. (PowerCon), vol. 1. Dec. 2000, pp. 85-90. otwiera się w nowej karcie
  46. R. Ota, N. Hoshi, and J. Haruna, ''Design of compensation capacitor in S/P topology of inductive power transfer system with buck or boost con- verter on secondary side,'' IEEJ J. Ind. Appl., vol. 4, no. 4, pp. 476-485, 2015. otwiera się w nowej karcie
  47. H. Movagharnejad and A. Mertens, ''Design metrics of compensation methods for contactless charging of electric vehicles,'' in Proc. 19th otwiera się w nowej karcie
  48. Eur. Conf. Power Electron. Appl. (EPE ECCE Eur.), Warsaw, Poland, Sep. 2017, pp. P.1-P.10. otwiera się w nowej karcie
  49. S.-H. Lee and R. D. Lorenz, ''Development and validation of model for 95%-efficiency 220-W wireless power transfer over a 30-cm air gap,'' IEEE Trans. Ind. Appl., vol. 47, no. 6, pp. 2495-2504, Nov./Dec. 2011. otwiera się w nowej karcie
  50. J.-S. Tsai, J.-S. Hu, S.-L. Chen, and X. Huang, ''Directional antenna design for wireless power transfer system in electric scooters,'' Adv. Mech. Eng., vol. 8, no. 2, pp. 1-13, 2016. otwiera się w nowej karcie
  51. S. Samanta and A. K. Rathore, ''Wireless power transfer technology using full-bridge current-fed topology for medium power applications,'' IET Power Electron., vol. 9, no. 9, pp. 1903-1913, Jul. 2016. otwiera się w nowej karcie
  52. H. Li, J. Li, K. Wang, W. Chen, and X. Yang, ''A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling,'' IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3998-4008, Jul. 2015. otwiera się w nowej karcie
  53. C.-S. Wang, O. H. Stielau, and G. A. Covic, ''Design considerations for a contactless electric vehicle battery charger,'' IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1308-1314, Oct. 2005. otwiera się w nowej karcie
  54. W. Zhang, S.-C. Wong, C. K. Tse, and Q. Chen, ''An optimized track length in roadway inductive power transfer systems,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 2, no. 3, pp. 598-608, Sep. 2014.
  55. M. Fu, Z. Tang, and C. Ma, ''Analysis and optimized design of compensa- tion capacitors for a megahertz WPT system using full-bridge rectifier,'' IEEE Trans. Ind. Informat., vol. 15, no. 1, pp. 95-104, Jan. 2019. otwiera się w nowej karcie
  56. J. T. Boys, G. A. Covic, and A. W. Green, ''Stability and control of inductively coupled power transfer systems,'' IEE Proc.-Electr. Power Appl., vol. 147, no. 1, pp. 37-43, Jan. 2000. otwiera się w nowej karcie
  57. H. Hong, D. Yang, and S. Won, ''The analysis for selecting compensating capacitances of two-coil resonant wireless power transfer system,'' in Proc. IEEE Int. Conf. Energy Internet (ICEI), Beijing, China, Apr. 2017, pp. 220-225. otwiera się w nowej karcie
  58. J. Sallan, J. L. Villa, A. Llombart, and J. F. Sanz, ''Optimal design of ICPT systems applied to electric vehicle battery charge,'' IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2140-2149, Jun. 2009. otwiera się w nowej karcie
  59. J. L. Villa, J. Sallan, J. F. S. Osorio, and A. Llombart, ''High-misalignment tolerant compensation topology for ICPT systems,'' IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 945-951, Feb. 2012. otwiera się w nowej karcie
  60. R. Bosshard and J. W. Kolar, ''Inductive power transfer for electric vehicle charging: Technical challenges and tradeoffs,'' IEEE Power Electron. Mag., vol. 3, no. 3, pp. 22-30, Sep. 2016. otwiera się w nowej karcie
  61. N. Femia, G. Di Capua, and G. Lisi, ''Power vs efficiency analysis in high-frequency wireless power transfer systems-Part I: Model,'' in Proc. IEEE 2nd Int. Forum Res. Technol. Soc. Ind. Leveraging Better Tomorrow (RTSI), Bologna, Italy, Sep. 2016, pp. 1-5. otwiera się w nowej karcie
  62. C. Anyapo, N. Teerakawanich, and C. Mitsantisuk, ''Phase-shift phase- lock loop (PLL) control for wireless power transmission system using primary-side information,'' in Proc. Int. Electr. Eng. Congr. (iEECON), Pattaya, Thailand, Mar. 2017, pp. 1-4. otwiera się w nowej karcie
  63. M. Petersen and F. W. Fuchs, ''Design of a highly efficient inductive power transfer (IPT) system for low voltage applications,'' in Proc. PCIM Eur., Int. Exhib. Conf. Power Electron., Intell. Motion, Renew. Energy Energy Manage., Nuremberg, Germany, May 2015, pp. 1-8. otwiera się w nowej karcie
  64. X. Liu, J. Liu, J. Wang, C. Wang, and X. Yuan, ''Design method for the coil-system and the soft switching technology for high-frequency and high-efficiency wireless power transfer systems,'' Energies, vol. 11, no. 1, p. 7, 2018. otwiera się w nowej karcie
  65. A. Berger, M. Agostinelli, S. Vesti, J. A. Oliver, J. A. Cobos, and M. Huemer, ''A wireless charging system applying phase-shift and ampli- tude control to maximize efficiency and extractable power,'' IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6338-6348, Nov. 2015. otwiera się w nowej karcie
  66. Y. Jiang, J. Liu, X. Hu, L. Wang, Y. Wang, and G. Ning, ''An optimized frequency and phase shift control strategy for constant current charging and zero voltage switching operation in series-series compensated wire- less power transmission,'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Cincinnati, OH, USA, Oct. 2017, pp. 961-966. otwiera się w nowej karcie
  67. F. Liu, W. Lei, T. Wang, C. Nie, and Y. Wang, ''A phase-shift soft- switching control strategy for dual active wireless power transfer system,'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Cincinnati, OH, USA, Oct. 2017, pp. 2573-2578. otwiera się w nowej karcie
  68. J. R. Sibué, G. Kwimang, J.-P. Ferrieux, G. Meunier, J. Roudet, and R. Périot, ''A global study of a contactless energy transfer system: Ana- lytical design, virtual prototyping, and experimental validation,'' IEEE Trans. Power Electron., vol. 28, no. 10, pp. 4690-4699, Oct. 2013. otwiera się w nowej karcie
  69. J. Jiang, K. Song, Z. Li, C. Zhu, and Q. Zhang, ''System modeling and switching control strategy of wireless power transfer system,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1295-1305, Sep. 2018. otwiera się w nowej karcie
  70. H. L. Li, A. P. Hu, and G. A. Covic, ''A power flow control method on primary side for a CPT system,'' in Proc. Int. Power Electron. Conf.- ECCE ASIA, Sapporo, Japan, Jun. 2010, pp. 1050-1055. otwiera się w nowej karcie
  71. W. Zhang, S.-C. Wong, C. K. Tse, and Q. Chen, ''Design for efficiency optimization and voltage controllability of series-series compensated inductive power transfer systems,'' IEEE Trans. Power Electron., vol. 29, no. 1, pp. 191-200, Jan. 2014. otwiera się w nowej karcie
  72. L. Tan, Z. Zhang, Z. Zhang, B. Deng, M. Zhang, J. Li, and X. Huang, ''A segmented power-efficiency coordinated control strategy for bidi- rectional wireless power transmission systems with variable structural parameters,'' IEEE Access, vol. 6, pp. 40289-40301, 2018. otwiera się w nowej karcie
  73. M. Sasaki and M. Yamamoto, ''Exciting voltage control for transfer efficiency maximization for multiple wireless power transfer systems,'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Cincinnati, OH, USA, Oct. 2017, pp. 5523-5528. otwiera się w nowej karcie
  74. T. Beh, M. Kato, T. Imura, and Y. Hori, ''Wireless power transfer sys- tem via magnetic resonant coupling at fixed resonance frequency-power transfer system based on impedance matching,'' World Electr. Vehicle J., vol. 4, no. 4, pp. 744-753, 2010. otwiera się w nowej karcie
  75. H. Li, K. Wang, J. Fang, and Y. Tang, ''Pulse density modulated ZVS full-bridge converters for wireless power transfer systems,'' IEEE Trans. Power Electron., vol. 34, no. 1, pp. 369-377, Jan. 2019. otwiera się w nowej karcie
  76. X. Liu, T. Wang, X. Yang, and H. Tang, ''Analysis of efficiency improve- ment in wireless power transfer system,'' IET Power Electron., vol. 11, no. 2, pp. 302-309, Feb. 2018. otwiera się w nowej karcie
  77. H. Ishihara, F. Moritsuka, H. Kudo, S. Obayashi, T. Itakura, A. Matsushita, H. Mochikawa, and S. Otaka, ''A voltage ratio-based efficiency control method for 3 kW wireless power transmission,'' in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Fort Worth, TX, USA, Mar. 2014, pp. 1312-1316. otwiera się w nowej karcie
  78. G. Vandevoorde and R. Puers, ''Wireless energy transfer for stand-alone systems: A comparison between low and high power applicability,'' Sens. Actuators A, Phys., vol. 92, nos. 1-3, pp. 305-311, 2000. otwiera się w nowej karcie
  79. R. Bosshard, U. Badstübner, J. W. Kolar, and I. Stevanović, ''Comparative evaluation of control methods for inductive power transfer,'' in Proc. Int. Conf. Renew. Energy Res. Appl. (ICRERA), Nagasaki, Japan, Nov. 2012, pp. 1-6. otwiera się w nowej karcie
  80. J.-I. Itoh, K. Noguchi, and K. Orikawa, ''System design of elec- tric assisted bicycle using EDLCs and wireless charger,'' in Proc. Int. Power Electron. Conf. (IPEC-Hiroshima-ECCE ASIA), Hiroshima, Japan, May 2014, pp. 2277-2284. otwiera się w nowej karcie
  81. C. Zhu, C. Yu, K. Liu, and R. Ma, ''Research on the topology of wireless energy transfer device,'' in Proc. IEEE Vehicle Power Propuls. Conf. (VPPC), Sep. 2008, pp. 1-5.
  82. M. G. Egan, D. L. O'Sullivan, J. G. Hayes, M. J. Willers, and C. P. Henze, ''Power-factor-corrected single-stage inductive charger for electric vehi- cle batteries,'' IEEE Trans. Ind. Electron., vol. 54, no. 2, pp. 1217-1226, Apr. 2007. otwiera się w nowej karcie
  83. Z. Ouyang, G. Sen, O. C. Thomsen, and M. A. E. Andersen, ''Analysis and design of fully integrated planar magnetics for primary-parallel isolated boost converter,'' IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 494-508, Feb. 2013. otwiera się w nowej karcie
  84. V. Shevchenko, O. Husev, B. Pakhaliuk, and I. Kondratenko, ''Design and simulation verification of low power wireless charging battery system for electric bicycle,'' in Proc. IEEE 3rd Int. Conf. Intell. Energy Power Syst. (IEPS), Kharkiv, Ukraine, Sep. 2018, pp. 22-27. otwiera się w nowej karcie
  85. S. Nutwong, A. Sangswang, and S. Naetiladdanon, ''Output voltage control of the SP topology IPT system using a primary side controller,'' in Proc. 13th Int. Conf. Electr. Eng./Electron., Comput., Telecommun. Inf. Technol. (ECTI-CON), Chiang Mai, Thailand, Jun./Jul. 2016, pp. 1-5. otwiera się w nowej karcie
  86. B. Ni, C. Y. Chung, and H. L. Chan, ''Design and comparison of parallel and series resonant topology in wireless power transfer,'' in Proc. IEEE 8th Conf. Ind. Electron. Appl. (ICIEA), Jun. 2013, pp. 1832-1837.
  87. W. Zhang, S.-C. Wong, C. K. Tse, and Q. Chen, ''Analysis and com- parison of secondary series-and parallel-compensated inductive power transfer systems operating for optimal efficiency and load-independent voltage-transfer ratio,'' IEEE Trans. Power Electron., vol. 29, no. 6, pp. 2979-2990, Jun. 2014. otwiera się w nowej karcie
  88. Z. Huang, S. C. Wong, and C. K. Tse, ''Design of a single-stage inductive- power-transfer converter for efficient EV battery charging,'' IEEE Trans. Veh. Technol., vol. 66, no. 7, pp. 5808-5821, Jul. 2017. otwiera się w nowej karcie
  89. J. Hou, Q. Chen, K. Yan, X. Ren, S.-C. Wong, and C. K. Tse, ''Analysis and control of S/SP compensation contactless resonant converter with constant voltage gain,'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2013, pp. 2552-2558. otwiera się w nowej karcie
  90. W. Zhang, S.-C. Wong, C. K. Tse, and Q. Chen, ''Load-independent duality of current and voltage outputs of a series-or parallel-compensated inductive power transfer converter with optimized efficiency,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 137-146, Mar. 2015.
  91. C. Chen, H. Zhou, Q. Deng, W. Hu, Y. Yu, X. Lu, and J. Lai, ''Modeling and decoupled control of inductive power transfer to implement constant current/voltage charging and ZVS operating for electric vehicles,'' IEEE Access, vol. 6, pp. 59917-59928, 2018. otwiera się w nowej karcie
  92. C. Wang, R. Lu, C. Zhu, G. Wei, and K. Song, ''Characteristics com- parison of typical secondary-side compensation topologies in wireless powering systems with constant-current primary-side,'' in Proc. IEEE Transp. Electrific. Conf. Expo, Asia-Pacific (ITEC Asia-Pacific), Harbin, China, Aug. 2017, pp. 1-6. otwiera się w nowej karcie
  93. N. Jamal, S. Saat, and A. Z. Shukor, ''A study on performances of different compensation topologies for loosely coupled inductive power transfer system,'' in Proc. IEEE Int. Conf. Control Syst., Comput. Eng., Mindeb, Malaysia, Nov./Dec. 2013, pp. 173-178. otwiera się w nowej karcie
  94. N. Jamal, S. Saat, Y. Yusmarnita, T. Zaid, and A. Isa, ''Investigations on capacitor compensation topologies effects of different inductive coupling links configurations,'' Int. J. Power Electron. Drive Syst., vol. 6, no. 2, pp. 274-281, Jun. 2015. otwiera się w nowej karcie
  95. K. Aditya and S. S. Williamson, ''Comparative study of series-series and series-parallel topology for long track EV charging application,'' in Proc. IEEE Transp. Electrific. Conf. Expo (ITEC), Dearborn, MI, USA, Jun. 2014, pp. 1-5. otwiera się w nowej karcie
  96. J. Li, J. Kang, C. Tian, D. Tian, and T. Xie, ''Study on wireless power transfer technology with series-series type of magnetic coupling reso- nance model,'' in Proc. 2nd Int. Conf. Comput. Eng., Inf. Sci. Internet Technol. (CII), 2017, pp. 225-232. otwiera się w nowej karcie
  97. Z. Qiang, W. Anna, and W. Hao, ''Structure analysis of magnetic coupling resonant for wireless power transmission system,'' in Proc. AASRI Int. Conf. Ind. Electron. Appl. (IEA), 2015, pp. 380-384. otwiera się w nowej karcie
  98. C.-S. Wang, G. A. Covic, and O. H. Stielau, ''General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,'' in Proc. IEEE IECON, vol. 2, Nov./Dec. 2001, pp. 1049-1054.
  99. B. Esteban, M. Sid-Ahmed, and N. C. Kar, ''A comparative study of power supply architectures in wireless EV charging systems,'' IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6408-6422, Nov. 2015. otwiera się w nowej karcie
  100. T. Diekhans and R. W. D. Doncker, ''A dual-side controlled induc- tive power transfer system optimized for large coupling factor varia- tions and partial load,'' IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6320-6328, Nov. 2015. otwiera się w nowej karcie
  101. Y. Chen, Z. Kou, Y. Zhang, Z. He, R. Mai, and G. Cao, ''Hybrid topology with configurable charge current and charge voltage output-based WPT charger for massive electric bicycles,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1581-1594, Sep. 2018. otwiera się w nowej karcie
  102. R. Mai, Y. Chen, Y. Li, Y. Zhang, G. Cao, and Z. He, ''Inductive power transfer for massive electric bicycles charging based on hybrid topology switching with a single inverter,'' IEEE Trans. Power Electron., vol. 32, no. 8, pp. 5897-5906, Aug. 2017. otwiera się w nowej karcie
  103. S. Li, W. Li, J. Deng, T. D. Nguyen, and C. C. Mi, ''A double-sided LCC compensation network and its tuning method for wireless power transfer,'' IEEE Trans. Veh. Technol., vol. 64, no. 6, pp. 2261-2273, Jun. 2015. otwiera się w nowej karcie
  104. W. Li, H. Zhao, S. Li, J. Deng, T. Kan, and C. C. Mi, ''Inte- grated LCC compensation topology for wireless charger in electric and plug-in electric vehicles,'' IEEE Trans. Ind. Electron., vol. 62, no. 7, pp. 4215-4225, Jul. 2015. otwiera się w nowej karcie
  105. W. Shi, J. Deng, Z. Wang, and X. Cheng, ''The start-up dynamic anal- ysis and one cycle control-PD control combined strategy for primary- side controlled wireless power transfer system,'' IEEE Access, vol. 6, pp. 14439-14450, 2018. otwiera się w nowej karcie
  106. Y. Li, Q. Xu, T. Lin, J. Hu, Z. He, and R. Mai, ''Analysis and design of load-independent output current or output voltage of a three-coil wireless power transfer system,'' IEEE Trans. Transport. Electrific., vol. 4, no. 2, pp. 364-375, Jun. 2018. otwiera się w nowej karcie
  107. N. Hatchavanich, M. Konghirun, and A. Saengswang, ''LCL-LCCL voltage source inverter with phase shift control for wireless EV charger,'' in Proc. IEEE 12th Int. Conf. Power Electron. Drive Syst. (PEDS), Honolulu, HI, USA, Dec. 2017, pp. 297-301. otwiera się w nowej karcie
  108. H. Zhao, W. Shu, D. Li, and S. Li, ''A novel wireless power charging sys- tem for electric bike application,'' in Proc. IEEE PELS Workshop Emerg. Technol., Wireless Power (WoW), Daejeon, South Korea, Jun. 2015, pp. 1-5.
  109. W. Li, H. Zhao, J. Deng, S. Li, and C. C. Mi, ''Comparison study on SS and double-sided LCC compensation topologies for EV/PHEV wireless chargers,'' IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 4429-4439, Jun. 2016. otwiera się w nowej karcie
  110. D. Fu, B. Lu, and F. C. Lee, ''1 MHz high efficiency LLC resonant converters with synchronous rectifier,'' in Proc. IEEE Power Electron. Spec. Conf., Orlando, FL, USA, Jun. 2007, pp. 2404-2410. otwiera się w nowej karcie
  111. C. L. Chia and E. K. K. Sng, ''A novel robust control method for the series-parallel resonant converter,'' IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1896-1904, Aug. 2009. otwiera się w nowej karcie
  112. B. Li, G. Zhu, J. Lu, W. Li, G. R. Kumar, and J. Wang, ''Output character- istics of LCC-S compensation network and its optimal parameters design in IPT system,'' J. Eng., vol. 2017, no. 13, pp. 1576-1579, 2017. otwiera się w nowej karcie
  113. X. Meng, D. Qiu, M. Lin, S. C. Tang, and B. Zhang, ''Output voltage identification based on transmitting side information for implantable wireless power transfer system,'' IEEE Access, vol. 7, pp. 2938-2946, 2018. otwiera się w nowej karcie
  114. I. Nam, R. Dougal, and E. Santi, ''Novel control approach to achieving efficient wireless battery charging for portable electronic devices,'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Raleigh, NC, USA, Sep. 2012, pp. 2482-2491. otwiera się w nowej karcie
  115. Y. Yao, X. Liu, Y. Wang, and D. Xu, ''LC/CL compensation topology and efficiency-based optimisation method for wireless power transfer,'' IET Power Electron., vol. 11, no. 6, pp. 1029-1037, May 2018. otwiera się w nowej karcie
  116. M. M. Alam, S. Mekhilef, H. Bassi, and M. J. H. Rawa, ''Analysis of LC-LC 2 compensated inductive power transfer for high efficiency and load independent voltage gain,'' Energies, vol. 11, no. 11, pp. 2883-2896, 2018. otwiera się w nowej karcie
  117. Z. Dai, J. Wang, M. Long, and H. Huang, ''A witricity-based high-power device for wireless charging of electric vehicles,'' Energies, vol. 10, no. 3, p. 323, 2017. otwiera się w nowej karcie
  118. Y. Wang, Y. Yao, X. Liu, D. Xu, and L. Cai, ''An LC/S compensation topology and coil design technique for wireless power transfer,'' IEEE Trans. Power Electron., vol. 33, no. 3, pp. 2007-2025, Mar. 2018. otwiera się w nowej karcie
  119. S. Samanta and A. K. Rathore, ''Analysis and design of current-fed (L)(C) (LC) converter for inductive wireless power transfer (IWPT),'' in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Montreal, QC, Canada, Sep. 2015, pp. 5724-5731. otwiera się w nowej karcie
  120. J. Hou, Q. Chen, X. Ren, X. Ruan, S.-C. Wong, and C. K. Tse, ''Precise characteristics analysis of series/series-parallel compensated contactless resonant converter,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 101-110, Mar. 2015.
  121. M. K. Uddin, S. Mekhilef, and G. Ramasamy, ''Compact wireless IPT system using a modified voltage-fed multi-resonant class EF2 inverter,'' J. Power Electron., vol. 18, no. 1, pp. 277-288, 2018. otwiera się w nowej karcie
  122. C. Zhao, Z. Wang, J. Du, J. Wu, S. Zong, and X. He, ''Active resonance wireless power transfer system using phase shift control strategy,'' in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Fort Worth, TX, USA, Mar. 2014, pp. 1336-1341. otwiera się w nowej karcie
  123. S. Nutwong, A. Sangswang, and S. Naetiladdanon, ''Design of the wire- less power transfer system with uncompensated secondary to increase power transfer capability,'' in Proc. 8th IET Int. Conf. Power Electron., Mach. Drives, Apr. 2016, pp. 1-5. otwiera się w nowej karcie
  124. V.-B. Vu, V.-T. Phan, M. Dahidah, and V. Pickert, ''Multiple output inductive charger for electric vehicles,'' IEEE Trans. Power Electron., vol. 34, no. 8, pp. 7350-7368, Aug. 2018. otwiera się w nowej karcie
  125. C. Jiang, K. T. Chau, C. Liu, and C. H. T. Lee, ''An overview of resonant circuits for wireless power transfer,'' Energies, vol. 10, no. 7, p. 894, 2017. otwiera się w nowej karcie
  126. S. Y. R. Hui, W. Zhong, and C. K. Lee, ''A critical review of recent progress in mid-range wireless power transfer,'' IEEE Trans. Power Elec- tron., vol. 29, no. 9, pp. 4500-4511, Sep. 2014. otwiera się w nowej karcie
  127. J. Zhang, X. Yuan, C. Wang, and Y. He, ''Comparative analysis of two- coil and three-coil structures for wireless power transfer,'' IEEE Trans. Power Electron., vol. 32, no. 1, pp. 341-352, Jan. 2017. otwiera się w nowej karcie
  128. T. Arakawa, S. Goguri, J. V. Krogmeier, A. Kruger, D. J. Love, R. Mudumbai, and M. A. Swabey, ''Optimizing wireless power transfer from multiple transmit coils,'' IEEE Access, vol. 6, pp. 23828-23838, 2018. otwiera się w nowej karcie
  129. B. Pakhaliuk, O. Husev, V. Shevchenko, O. Veligorskyi, and K. Kroics, ''Novel inductive power transfer approach based on Z-source network with compensation circuit,'' in Proc. IEEE 38th Int. Conf. Electron. Nanotechnol. (ELNANO), Kiev, Ukraine, Apr. 2018, pp. 699-704. otwiera się w nowej karcie
  130. C. Xia, Y. Liu, K. Lin, and G. Xie, ''Model and frequency control for three-phase wireless power transfer system,'' Math. Problems Eng., vol. 2016, Sep. 2016, Art. no. 3853146. otwiera się w nowej karcie
  131. M. R. A. Khandaker, K.-K. Wong, Y. Zhang, and Z. Zheng, ''Probabilis- tically robust SWIPT for secrecy MISOME systems,'' IEEE Trans. Inf. Forensics Security, vol. 12, no. 1, pp. 211-226, Jan. 2017. otwiera się w nowej karcie
  132. S. Y. R. Hui and W. W. C. Ho, ''A new generation of universal contactless battery charging platform for portable consumer electronic equipment,'' IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, May 2005. otwiera się w nowej karcie
  133. B.-M. Song, R. Kratz, and S. Gurol, ''Contactless inductive power pickup system for Maglev applications,'' in Proc. Conf. Rec. IEEE IAS Annu. Meeting, vol. 3, Oct. 2002, pp. 1586-1591.
  134. U. K. Madawala and D. J. Thrimawithana, ''A bidirectional inductive power interface for electric vehicles in V2G systems,'' IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789-4796, Oct. 2011. otwiera się w nowej karcie
  135. J. Kuang, B. Luo, Y. Zhang, Y. Hu, and Y. Wu, ''Load-isolation wireless power transfer with K-inverter for multiple-receiver applications,'' IEEE Access, vol. 6, pp. 31996-32004, 2018. otwiera się w nowej karcie
  136. H. Nguyen, J. I. Agbinya, and J. Devlin, ''Channel characterisation and link budget of MIMO configuration in near field magnetic communi- cation,'' Int. J. Electron. Telecommun., vol. 59, no. 3, pp. 255-262, Aug. 2013. otwiera się w nowej karcie
  137. H. Han, Z. Mao, Q. Zhu, M. Su, and A. P. Hu, ''A 3D wireless charging cylinder with stable rotating magnetic field for multi-load application,'' IEEE Access, vol. 7, pp. 35981-35997, 2019. otwiera się w nowej karcie
  138. H. Hao, G. A. Covic, and J. T. Boys, ''A parallel topology for inductive power transfer power supplies,'' IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1140-1151, May 2014.
  139. L. Shi, Z. Yin, L. Jiang, and Y. Li, ''Advances in inductively coupled power transfer technology for rail transit,'' CES Trans. Elect. Mach. Syst., vol. 1, no. 4, pp. 383-396, Dec. 2017.
  140. K. A. Kalwar, M. Aamir, and S. Mekhilef, ''A design method for devel- oping a high misalignment tolerant wireless charging system for electric vehicles,'' Measurement, vol. 118, pp. 237-245, Mar. 2018. otwiera się w nowej karcie
  141. X. Qu, H. Han, S.-C. Wong, C. K. Tse, and W. Chen, ''Hybrid IPT topologies with constant current or constant voltage output for battery charging applications,'' IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6329-6337, Nov. 2015. otwiera się w nowej karcie
  142. R. Bosshard, J. W. Kolar, and B. Wunsch, ''Control method for inductive power transfer with high partial-load efficiency and resonance track- ing,'' in Proc. Int. Power Electron. Conf. (IPEC-Hiroshima-ECCE ASIA), Hiroshima, Japan, May 2014, pp. 2167-2174. otwiera się w nowej karcie
  143. C. Li, X. Zhao, C. Liao, and L. Wang, ''A graphical analysis on compen- sation designs of large-gap CPT systems for EV charging applications,'' CES Trans. Elect. Mach. Syst., vol. 2, no. 2, pp. 232-242, Jun. 2018. otwiera się w nowej karcie
  144. G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, ''The design of a contact-less energy transfer system for a people mover system,'' in Proc. Int. Conf. Power Syst. Technol., vol. 1, Dec. 2000, pp. 79-84. otwiera się w nowej karcie
  145. J. Yuan, F. Xiao, C. Zhang, Z. Ni, and Y. Zhong, ''A hybrid negative current compensation system for high-speed railway power system,'' in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), San Antonio, TX, USA, Mar. 2018, pp. 1461-1466. otwiera się w nowej karcie
  146. M. Petersen and F. W. Fuchs, ''Investigation on power electronics topolo- gies for inductive power transfer (IPT) systems in high power low voltage applications,'' in Proc. 17th Eur. Conf. Power Electron. Appl. (EPE ECCE-Eur.), Geneva, Switzerland, Sep. 2015, pp. 1-10. otwiera się w nowej karcie
  147. Y. Yang, Y. Benomar, M. El Baghdadi, O. Hegazy, and J. Van Mierlo, ''Design, modeling and control of a bidirectional wireless power transfer for light-duty vehicles: G2V and V2G systems,'' in Proc. 19th Eur. Conf. Power Electron. Appl. (EPE ECCE Eur.), Warsaw, Poland, Sep. 2017, pp. P.1-P.12. otwiera się w nowej karcie
  148. K. A. Kalwar, M. Aamir, and S. Mekhilef, ''Inductively coupled power transfer (ICPT) for electric vehicle charging-A review,'' Renew. Sustain. Energy Rev., vol. 47, pp. 462-475, Jul. 2015. otwiera się w nowej karcie
  149. C. Auvigne, P. Germano, D. Ladas, and Y. Perriard, ''A dual-topology ICPT applied to an electric vehicle battery charger,'' in Proc. Int. Conf. Elect. Mach., Sep. 2012, pp. 2287-2292. otwiera się w nowej karcie
  150. H. Z. Z. Beh, G. A. Covic, and J. T. Boys, ''Wireless fleet charging system for electric bicycles,'' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 1, pp. 75-86, Mar. 2015. otwiera się w nowej karcie
  151. A. Okuno, L. Gamage, and M. Nakaoka, ''Performance evaluations of high-frequency inverter-linked DC/DC converter with noncontact pickup coil,'' IEEE Trans. Ind. Electron., vol. 48, no. 2, pp. 475-477, Apr. 2001. otwiera się w nowej karcie
  152. A. Esser and H.-C. Skudelny, ''A new approach to power supplies for robots,'' IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 872-875, Sep. 1991. otwiera się w nowej karcie
  153. B. J. Heeres, D. W. Novotny, D. M. Divan, and R. D. Lorenz, ''Contact- less underwater power delivery,'' in Proc. Power Electron. Spec. Conf. (PESC), vol. 1, Jun. 1994, pp. 418-423. otwiera się w nowej karcie
  154. W. Niu, W. Gu, and J. Chu, ''Analysis and experimental results of frequency splitting of underwater wireless power transfer,'' J. Eng., vol. 2017, no. 7, pp. 385-390, Jul. 2017. otwiera się w nowej karcie
  155. W. Zhong, C. K. Lee, and S. Y. R. Hui, ''General analysis on the use of Tesla's resonators in domino forms for wireless power transfer,'' IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 261-270, Jan. 2013. otwiera się w nowej karcie
  156. Y. Lu and D. B. Ma, ''Wireless power transfer system architectures for portable or implantable applications,'' Energies, vol. 9, no. 12, p. 1087, 2016. otwiera się w nowej karcie
  157. H.-J. Kim, H. Hirayama, S. Kim, K. J. Han, R. Zhang, and J.-W. Choi, ''Review of near-field wireless power and communication for biomedical applications,'' IEEE Access, vol. 5, pp. 21264-21285, 2017. otwiera się w nowej karcie
  158. Q. Chen, S. C. Wong, C. K. Tse, and X. Ruan, ''Analysis, design, and control of a transcutaneous power regulator for artificial hearts,'' IEEE Trans. Biomed. Circuits Syst., vol. 3, no. 1, pp. 23-31, Feb. 2009. otwiera się w nowej karcie
  159. Y. Jang and M. M. Jovanovic, ''A contactless electrical energy transmis- sion system for portable-telephone battery chargers,'' IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
  160. Y. Jang and M. M. Jovanovic, ''A contactless electrical energy transmis- sion system for portable-telephone battery chargers,'' in Proc. 22nd Conf. Rec. Telecommun. Energy Conf., Sep. 2000, pp. 726-732.
  161. Wireless Power Transfer and Charging. [Online]. Available: http://www. designhmi.com/2015/04/16/wireless-power-transfer-and-charging/ otwiera się w nowej karcie
  162. Z. Yan, Q. Siyao, Q. Zhu, L. Huang, and A. P. Hu, ''A simple brightness and color control method for LED lighting based on wireless power transfer,'' IEEE Access, vol. 6, pp. 51477-51483, 2018. otwiera się w nowej karcie
  163. M. Su, Z. Liu, Q. Zhu, and A. P. Hu, ''Study of maximum power delivery to movable device in omnidirectional wireless power transfer system,'' IEEE Access, vol. 6, pp. 76153-76164, 2018. otwiera się w nowej karcie
  164. K. Throngnumchai, A. Hanamura, Y. Naruse, and K. Takeda, ''Design and evaluation of a wireless power transfer system with road embedded trans- mitter coils for dynamic charging of electric vehicles,'' in Proc. World Electr. Vehicle Symp. Exhib. (EVS), Barcelona, Spain, 2013, pp. 1-10. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 263 razy

Publikacje, które mogą cię zainteresować

Meta Tagi