Abstrakt
In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the well-known standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.
Cytowania
-
6
CrossRef
-
0
Web of Science
-
9
Scopus
Autorzy (2)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/johh-2014-0031
- Licencja
- otwiera się w nowej karcie
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuł w czasopiśmie wyróżnionym w JCR
- Opublikowano w:
-
Journal of Hydrology and Hydromechanics
nr 62,
wydanie 3,
strony 226 - 233,
ISSN: 0042-790X - Język:
- angielski
- Rok wydania:
- 2014
- Opis bibliograficzny:
- Artichowicz W., Szymkiewicz R.: Computational issues of solving the 1D steady gradually varied flow equation// Journal of Hydrology and Hydromechanics. -Vol. 62, iss. 3 (2014), s.226-233
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/johh-2014-0031
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 171 razy