Computational issues of solving the 1D steady gradually varied flow equation - Publikacja - MOST Wiedzy

Wyszukiwarka

Computational issues of solving the 1D steady gradually varied flow equation

Abstrakt

In this paper a problem of multiple solutions of steady gradually varied flow equation in the form of the ordinary differential energy equation is discussed from the viewpoint of its numerical solution. Using the Lipschitz theorem dealing with the uniqueness of solution of an initial value problem for the ordinary differential equation it was shown that the steady gradually varied flow equation can have more than one solution. This fact implies that the nonlinear algebraic equation approximating the ordinary differential energy equation, which additionally coincides with the well-known standard step method usually applied for computing of the flow profile, can have variable number of roots. Consequently, more than one alternative solution corresponding to the same initial condition can be provided. Using this property it is possible to compute the water flow profile passing through the critical stage.

Cytowania

  • 6

    CrossRef

  • 4

    Web of Science

  • 8

    Scopus

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Journal of Hydrology and Hydromechanics nr 62, wydanie 3, strony 226 - 233,
ISSN: 0042-790X
Język:
angielski
Rok wydania:
2014
Opis bibliograficzny:
Artichowicz W., Szymkiewicz R.: Computational issues of solving the 1D steady gradually varied flow equation// Journal of Hydrology and Hydromechanics. -Vol. 62, iss. 3 (2014), s.226-233
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.2478/johh-2014-0031
Weryfikacja:
Politechnika Gdańska

wyświetlono 68 razy

Publikacje, które mogą cię zainteresować

Meta Tagi