Detecting type of hearing loss with different AI classification methods: a performance review - Publikacja - MOST Wiedzy

Wyszukiwarka

Detecting type of hearing loss with different AI classification methods: a performance review

Abstrakt

Hearing is one of the most crucial senses for all humans. It allows people to hear and connect with the environment, the people they can meet and the knowledge they need to live their lives to the fullest. Hearing loss can have a detrimental impact on a person's quality of life in a variety of ways, ranging from fewer educational and job opportunities due to impaired communication to social withdrawal in severe situations. Early diagnosis and treatment can prevent most hearing loss. Pure tone audiometry, which measures air and bone conduction hearing thresholds at various frequencies, is widely used to assess hearing loss. A shortage of audiologists might delay diagnosis since they must analyze an audiogram, a graphic representation of pure tone audiometry test results, to determine hearing loss type and treatment. In the presented work, several AI-based models were used to classify audiograms into three types of hearing loss: mixed, conductive, and sensorineural. These models included Logistic Regression, Support Vector Machines, Stochastic Gradient Descent, Decision Trees, RandomForest, Feedforward Neural Network (FNN), Convolutional Neural Network (CNN), Graph Neural Network (GNN), and Recurrent Neural Network (RNN). The models were trained using 4007 audiograms classified by experienced audiologists. The RNN architecture achieved the best classification performance, with an out-of-training accuracy of 94.46\%. Further research will focus on increasing the dataset and enhancing the accuracy of RNN models.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Autorzy (10)

Cytuj jako

Pełna treść

pełna treść publikacji nie jest dostępna w portalu

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Aktywność konferencyjna
Typ:
publikacja w wydawnictwie zbiorowym recenzowanym (także w materiałach konferencyjnych)
Język:
angielski
Rok wydania:
2023
Opis bibliograficzny:
Kassjański M., Kulawiak M., Przewoźny T., Tretiakow D., Kuryłowicz J., Molisz A., Koźmiński K., Kwaśniewska A., Mierzwińska-Dolny P., Grono M.: Detecting type of hearing loss with different AI classification methods: a performance review// / : , 2023,
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.15439/2023f3083
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 111 razy

Publikacje, które mogą cię zainteresować

Meta Tagi