Influence of Fragment Size on the Time and Temperature of Ethylene Vinyl Acetate Lamination Decomposition in the Photovoltaic Module Recycling Process - Publikacja - MOST Wiedzy

Wyszukiwarka

Influence of Fragment Size on the Time and Temperature of Ethylene Vinyl Acetate Lamination Decomposition in the Photovoltaic Module Recycling Process

Abstrakt

Photovoltaics is a commercially available and reliable technology with significant potential for long-term growth in nearly all global regions. Several research institutes and companies are working on recycling concepts for thin film modules and modules with crystalline cells. The establishment of recycling and reuse technologies appropriate and applicable to all photovoltaics (PV) modules is a key issue to be addressed as part of corporate social responsibility to safeguard the environment and to implement a fully material-circulated society without any waste. The copolymer ethylene-vinyl acetate (EVA) layer is a thermoplastic containing cross-linkable ethylene vinyl acetate, which is used to encapsulate the photovoltaic cells. The cells are laminated between films of EVA in a vacuum, under compression, and up to 150·°C. The encapsulant’s primary purpose is to bond or laminate the multiple layers of the module together. In the photovoltaic module recycling process, the second important step (after mechanical dismantling of the frame) is EVA lamination removal. In this study, different parameters of the thermal delamination method used during the recycling process were experimentally tested and compared, and the most ecological and economical one is proposed.

Cytowania

  • 8

    CrossRef

  • 0

    Web of Science

  • 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 48 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials nr 12, strony 2857 - 2867,
ISSN: 1996-1944
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kuczyńska-Łażewska A., Klugmann-Radziemska E.: Influence of Fragment Size on the Time and Temperature of Ethylene Vinyl Acetate Lamination Decomposition in the Photovoltaic Module Recycling Process// Materials. -Vol. 12, iss. 18 (2019), s.2857-2867
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/ma12182857
Bibliografia: test
  1. Klugmann-Radziemska, E. Recycling and Reuse Treatment Technologies for Photovoltaic Cells and Modules-A Review. Recycling: Processes, Costs and Benefits; Nova Science Publishers: New York, NY, USA, 2011; pp. 205-221. otwiera się w nowej karcie
  2. Klugmann-Radziemska, E. Recycling of Photovoltaic Solar Cells and Modules-The State Of Art; Lambert Academic Publishing: Riga, Latvia, 2014. otwiera się w nowej karcie
  3. Urashima, N.; Izumina, M.; Arita, A.; Matsumoto, K. Research & development on recycling technology of photovoltaic power generation systems-Social system for PV recycling. In Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 11-18 May 2003; pp. 1985-1987. otwiera się w nowej karcie
  4. Eberspacher, C.; Fthenakis, V.M. Disposal and Recycling of end-of-Life PV Modules. In Proceedings of the 26th Photovoltiac Special Conference, Anaheim, CA, USA, 29 September-3 October 1997; pp. 1067-1072. otwiera się w nowej karcie
  5. Fthenakis, V.M. Overview of potential hazards. In Practical Handbook of Photovoltaics: Fundamentals and Applications; Markvart, T., Castaner, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2003. otwiera się w nowej karcie
  6. Müller, A.; Röver, I.; Wambach, K.; von Ramin-Marro, D.W. Recovery of high value material of different photovoltaic technologies. In Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-5 Septemeber 2007; pp. 2613-2616.
  7. Kang, S.; Yoo, S.; Lee, J.; Boo, B.; Ryu, H. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energy 2012, 47, 152-159. [CrossRef] otwiera się w nowej karcie
  8. Marwede, M.; Berger, W.; Schlummer, M.; Mäurer, A.; Reller, A. Recycling paths for thin-film chalcogenide photovoltaic waste-Current feasible processes. Renew. Energy 2013, 55, 220-229. [CrossRef] otwiera się w nowej karcie
  9. Held, M. Life cycle assessment of CdTe module recycling. In Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009; pp. 2370-2375.
  10. Bohland, J.R.; Anisimov, I.I.; Dapkus, T. Economic recycling of CdTe photovoltaic modules. In Proceedings of the 26th Photovoltiac Special Conference, Anaheim, CA, USA, 29 September-3 October 1997; pp. 355-358. otwiera się w nowej karcie
  11. Doi, T.; Tsuda, I.; Unagida, H.; Murata, A.; Sakuta, K.; Kurokawa, K. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 2001, 67, 397-403. [CrossRef] otwiera się w nowej karcie
  12. Campo, M.D.; Dieter, B.; Gegenwart, R.; Beier, J. Process for Recycling CdTe/CdS Thin Film Solar Cell Modules, US Patent 6,572,782 B2, 3 June 2003.
  13. Tammaro, M.; Rimauro, J.; Fiandra, V.; Salluzzo, A. Thermal treatment of waste photovoltaic module for recovery and recycling: Experimental assessment of the presence of metals in the gas emissions and in the ashes. Renew. Energy 2015, 81, 103-112. [CrossRef] otwiera się w nowej karcie
  14. Berger, W.; Simon, F.-G.; Weimann, K.; Alsema, E.A. A novel approach for the recycling of thin film photovoltaic modules. Resour. Conserv. Recycl. 2010, 54, 711-718. [CrossRef] otwiera się w nowej karcie
  15. Tao, J.; Yu, S. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 2015, 141, 108-124. [CrossRef] otwiera się w nowej karcie
  16. Agroui, K.; Belghachi, A.; Collins, G.; Farenc, J. Quality control of EVA encapsulant in photovoltaic module process and outdoor exposure. Desalination 2007, 209, 1-9. [CrossRef] otwiera się w nowej karcie
  17. Agroui, K.; Maallemi, A.; Boumaour, M.; Collins, G.; Salama, M. Thermal stability of slow and fast cure EVA encapsulant material for photovoltaic module manufacturing process. Sol. Energy Mater. Sol. Cells 2006, 90, 2509-2514. [CrossRef] otwiera się w nowej karcie
  18. Zeng, D.; Born, M.; Wambach, K. Pyrolysis of EVA and its application in recycling of photovoltaic modules. J. Environ. Sci. 2004, 16, 889-893. otwiera się w nowej karcie
  19. Material Properties. Available online: http://www.matweb.com (accessed on 22 June 2016). otwiera się w nowej karcie
  20. Stark, W.; Jaunich, M. Investigation of Ethylene/Vinyl Acetate Copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 2011, 30, 236-242. [CrossRef] otwiera się w nowej karcie
  21. Radziemska, E.; Ostrowski, P.; Janik, H.; Leszkowski, K.; Sielicki, P. The research of physico-chemical properties of EVA copolymer for recycling of photovoltaic modules. ECOpole 2010, 4, 187-192.
  22. Beyler, C.L.; Hirschler, M.M. Thermal Decomposition of Polymers. In SFPE Handbook of Fire Protection Engineering 2; National Fire Protection Association: Quincy, MA, USA, 2002; pp. 110-131. otwiera się w nowej karcie
  23. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 162 razy

Publikacje, które mogą cię zainteresować

Meta Tagi