Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites - Publikacja - MOST Wiedzy

Wyszukiwarka

Influence of the preparation method and aluminum ion substitution on the structure and electrical properties of lithium–iron ferrites

Abstrakt

Cytowania

  • 4

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Autorzy (0)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 43 razy
Wersja publikacji
Submitted Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
Publikacja w czasopiśmie
Opublikowano w:
Applied Nanoscience
ISSN: 2190-5509
ISSN:
2190-5509
Rok wydania:
2021
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s13204-021-01691-0
Bibliografia: test
  1. Sijo AK, Dutta DP, Roy M (2017) Dielectric properties of CoCrFeO4 nano-powder prepared by solution self combustion synthesis. Ceramics Int 43(18):16915-16918. https://doi.org/https ://doi. org/10.1016/j.ceram int.2017.09.093 otwiera się w nowej karcie
  2. Aravind G, Ravinder D, Nathanial V (2014) Structural and electri- cal properties of Li-Ni nanoferrites synthesised by citrate gel autocombustion method. Phys Res Int 2014:1-11. https ://doi. org/10.1155/2014/67273 9 otwiera się w nowej karcie
  3. Argentina GM, Baba PD (1974) Microwave Lithium ferrites: an over- view. IEEE Trans Microw Theory Tech 22(6):652-658. https :// doi.org/10.1109/tmtt.1974.11283 08 otwiera się w nowej karcie
  4. Arillo MÁ, López ML, Pico C, Veiga ML, Cuello G (2004) Order- disorder transition and magnetic ordering in lithium-titanium ferrites. Phys B 350(1-3):E301-E304. https ://doi.org/10.1016/j. physb .2004.03.075 otwiera się w nowej karcie
  5. Darul J, Nowicki W, Piszora P, Baehtz C, Wolska E (2005) Synchrotron X-ray powder diffraction studies on the order-disorder phase tran- sition in lithium ferrites. J Alloy Compd 401(1-2):60-63. https :// doi.org/10.1016/j.jallc om.2005.02.058 otwiera się w nowej karcie
  6. El-Fadl AA, Abd-Elrahman MI, Younis N, Afify N, Abu-Sehly AA, Hafiz MM (2019) Syntheses of new spinels Zn1-Fe Al 2 O 4 nanocrystallines structure: Optical and magnetic characteristics. J Alloy Compd 795:114-119. https ://doi.org/10.1016/j.jallc om.2019.05.008 otwiera się w nowej karcie
  7. Gajula GR, Buddiga LR (2020) Structural, ferroelectric, dielectric, impedance and magnetic properties of Gd and Nb doped bar- ium titanate-lithium ferrite solid solutions. J Magn Magn Mater 494:165822. https ://doi.org/10.1016/j.jmmm.2019.16582 2 otwiera się w nowej karcie
  8. Gul S, Yousuf MA, Anwar A, Warsi MF, Agboola PO, Shakir I, Shahid M (2020) Al-substituted zinc spinel ferrite nanoparticles: prepara- tion and evaluation of structural, electrical, magnetic and photo- catalytic properties. Ceram Int 46(9):14195-14205. https ://doi. org/10.1016/j.ceram int.2020.02.228 otwiera się w nowej karcie
  9. Jha VK, Sijo AK, Alam SN, Roy M (2019) Effect of Nd doping on structural, electrical, thermal and magnetic properties of multi- functional BiFeO 3 Ceramics. J Supercond Novel Magn 33(2):455- 461. https ://doi.org/10.1007/s1094 8-019-05206 -5 otwiera się w nowej karcie
  10. Kaykan LS, Mazurenko JS, Yaremiy IP, Bandura KV, Ostapovych NV (2019) Effect of nickel ions substitution on the structural and electrical properties of a nanosized lithium-iron ferrite obtained by the sol-gel auto-combustion method. J Nano-and Electron Phys 11(5):05041-1-05041-05047. https ://doi.org/10.21272 / jnep.11(5).05041 otwiera się w nowej karcie
  11. Kaykan LS, Mazurenko JS, Sijo AK, Makovysyn VI (2020) Struc- tural properties of magnesium-substituted lithium ferrites. Appl Nanosci 10(8):2739-2747. https ://doi.org/10.1007/s1320 4-020- 01259 -4 otwiera się w nowej karcie
  12. Khan MZ, Gul IH, Baig MM, Khan AN (2020) Comprehensive study on structural, electrical, magnetic and photocatalytic degradation properties of Al3+ ions substituted nickel ferrites nanoparti- cles. J Alloy Compd 848:155795. https ://doi.org/10.1016/j.jallc om.2020.15579 5 otwiera się w nowej karcie
  13. Kopayev AV, Mokljak VV, Gasyuk IM, Yaremiy IP, Kozub VV (2015) Structure ordering in Mg-Zn ferrite nanopowders obtained by the method of sol-gel autocombustion. Solid State Phenom 230:114- 119. https ://doi.org/10.4028/www.scien tific .net/ssp.230.114 otwiera się w nowej karcie
  14. Maity G, Maji P, Sain S, Das S, Kar T, Pradhan SK (2019) Microstruc- ture, optical and electrical characterizations of nanocrystalline ZnAl2O4 spinel synthesized by mechanical alloying: Effect of sin- tering on microstructure and properties. Physica E 108:411-420. https ://doi.org/10.1016/j.physe .2018.10.024 otwiera się w nowej karcie
  15. Manikandan V, Singh M, Yadav BC, Denardin JC (2018) Fabrication of lithium substituted copper ferrite (Li-CuFe2O4) thin film as an efficient gas sensor at room temperature. J Sci 3(2):145-150. https ://doi.org/10.1016/j.jsamd .2018.03.008 otwiera się w nowej karcie
  16. Manikandan V, Kim J-H, Mirzaei A, Kim SS, Vigneselvan S, Singh M, Chandrasekaran J (2019) Effect of temperature on gas sensing properties of lithium (Li) substituted (NiFe 2 O 4 ) nickel ferrite thin film. J Mol Struct 1177:485-490. https ://doi.org/10.1016/j.molst ruc.2018.09.085 otwiera się w nowej karcie
  17. Mondal RA, Murty BS, Murthy VRK (2014) Maxwell-Wagner polarization in grain boundary segregated NiCuZn ferrite. otwiera się w nowej karcie
  18. Curr Appl Phys 14(12):1727-1733. https ://doi.org/10.1016/j. cap.2014.10.005 otwiera się w nowej karcie
  19. Ni Q, Sun L, Cao E, Hao W, Zhang Y, Ju L (2020) Structural, magnetic and dielectric properties of (Li1+, Al3+) co-doped Ni0.5Zn0.5Fe2O4 ferrite ceramics prepared by the sol-gel auto- combustion method. Current Applied Physics, 20(9), 1019-1025. https ://doi.org/10.1016/j.cap.2020.06.012 otwiera się w nowej karcie
  20. Ostafijchuk BK, Bushkova VS, Moklyak VV, lnitsky RV (2015) Syn- thesis and Magnetic Microstructure of Nanoparticles of Zinc- Substituted Magnesium Ferrites. Ukrainian Journal of Physics, 60(12), 1234-1242. https ://doi.org/10.15407 /ujpe6 0.12.1234 otwiera się w nowej karcie
  21. Ostafiychuk BK, Gasyuk IM, Kaykan LS, Uhorchuk VV, Yakubovs- kiy PP, Tsap VA, Kaykan YS (2016) Temperature-Frequency Dependences of Dielectric Constants of Magnesium-Substi- tuted Lithium Ferrite. Metallofizika I Noveishie Tekhnologii, 36(1):89-102. https ://doi.org/10.15407 /mfint .36.01.0089 https :// doi.org/10.1021/cm011 219v otwiera się w nowej karcie
  22. Ostafiychuk BK, Kaykan LS, Kaykan JS, Deputat BY, Shevchuk OV (2017) Composition, microstructure, and electrical properties control of the powders synthesized by sol-gel auto-combustion method using citric acid as the fuel. Nanoscale Research Letters, 12(1). https ://doi.org/10.1186/s1167 1-017-1976-1 otwiera się w nowej karcie
  23. Patel CK, Solanki NP, Singh C, Jotania RB, Chauhan CC, Kulkarni SD, Shirsath SE (2017) Structural phases, magnetic properties and Maxwell-Wagner type relaxation of CoFe 2 O 4 /Sr 2 Co 2 Fe 12 O 22 ferrite composites. Materials Res Express 4(7):076105. https :// doi.org/10.1088/2053-1591/aa769 9 otwiera się w nowej karcie
  24. Patil RP, Hankare PP, Garadkar KM, Sasikala R (2012) Effect of sinter- ing temperature on structural, magnetic properties of lithium chro- mium ferrite. J Alloy Compd 523:66-71. https ://doi.org/10.1016/j. jallc om.2012.01.025 otwiera się w nowej karcie
  25. Poudel TP, Rai BK, Yoon S, Guragain D, Neupane D, Mishra SR (2019) The effect of gadolinium substitution in inverse spi- nel nickel ferrite: Structural, Magnetic, and Mössbauer study. J Alloy Compd 802:609-619. https ://doi.org/10.1016/j.jallc om.2019.06.201 otwiera się w nowej karcie
  26. Sartaj Aziz H, Ali Khan R, Shah F, Ismail B, Nisar J, Mujtaba Shah S, Rahim A, Rahman Khan A (2019) Improved electrical, dielec- tric and magnetic properties of Al-Sm co-doped NiFe 2 O 4 spinel ferrites nanoparticles. Mater Sci Eng, B 243:47-53. https ://doi. org/10.1016/j.mseb.2019.03.021 otwiera się w nowej karcie
  27. Saxena N, Kuanr BK, Zaidi ZH, Srivastava GP (1991) Effect of alu- minium substitution on electric, magnetic, and microwave proper- ties of LiTi ferrite. Physica Status Solidi (a) 127(1):231-242. https ://doi.org/10.1002/pssa.22112 70126 otwiera się w nowej karcie
  28. Sijo AK, Dutta DP (2018) Size-dependent magnetic and structural properties of CoCrFeO 4 nano-powder prepared by solution self-combustion. J Magn Magn Mater 451:450-453. https ://doi. org/10.1016/j.jmmm.2017.11.092 otwiera się w nowej karcie
  29. Sijo AK, Jha VK, Dutta DP (2020) Structure and cation distribution in superparamagnetic NiCrFeO 4 nanoparticles using Mössbauer study. J Magn Magn Mater 497:166047. https ://doi.org/10.1016/j. jmmm.2019.16604 7 otwiera się w nowej karcie
  30. Soman VV, Nanoti VM, Kulkarni DK (2013) Dielectric and magnetic properties of Mg-Ti substituted barium hexaferrite. Ceram Int 39(5):5713-5723. https ://doi.org/10.1016/j.ceram int.2012.12.089 otwiera się w nowej karcie
  31. Zaki HM, AL-Heniti SH, Aljwiher MM (2020) Synthesis, structural, magnetic and dielectric studies of aluminum substituted cobalt- copper ferrite. Physica B 597:412382. https ://doi.org/10.1016/j. physb .2020.41238 2 otwiera się w nowej karcie
Weryfikacja:
Brak weryfikacji

wyświetlono 68 razy

Meta Tagi