LOS and NLOS identification in real indoor environment using deep learning approach - Publikacja - MOST Wiedzy

Wyszukiwarka

LOS and NLOS identification in real indoor environment using deep learning approach

Abstrakt

Visibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning. In this paper a deep learning (DL) model to classify LOS/NLOS condition while analyzing two Channel Impulse Response (CIR) parameters: Total Power (TP) [dBm] and First Path Power (FP) [dBm] is proposed. The experiments were conducted using DWM1000 DecaWave radio module based on measurements collected in a real indoor environment and the proposed architecture provides LOS/NLOS identification with an accuracy of more than 100% and 95% in static and dynamic senarios, respectively. The proposed model improves the classification rate by 2-5% compared to other machine learning (ML) methods proposed in the literature.

Cytowania

  • 3

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Digital Communications and Networks nr 10, strony 1305 - 1312,
ISSN: 2468-5925
Język:
angielski
Rok wydania:
2024
Opis bibliograficzny:
Olejniczak A., Błaszkiewicz O., Cwalina K., Rajchowski P., Sadowski J.: LOS and NLOS identification in real indoor environment using deep learning approach// Digital Communications and Networks -Vol. 10,iss. 5 (2024), s.1305-1312
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.dcan.2023.05.009
Źródła finansowania:
  • Działalność statutowa/subwencja
Weryfikacja:
Politechnika Gdańska

wyświetlono 94 razy

Publikacje, które mogą cię zainteresować

Meta Tagi