Noise profiling for speech enhancement employing machine learning models - Publikacja - MOST Wiedzy

Wyszukiwarka

Noise profiling for speech enhancement employing machine learning models

Abstrakt

This paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features derived from the Aurora noise dataset. This is to select the best-performing classifier in the context of noise profiling. Therefore, a comparison of all classifier outcomes is shown based on effectiveness metrics. Also, confusion matrices prepared for all tested models are presented. The second part of the experiment consists of selecting the algorithm that scored the best, i.e., Naïve Bayes, resulting in an accuracy of 96.76%, and using it in a noise-type recognition model to demonstrate that it can perform in a stable way. Classification results are derived from the real-life recordings performed in momentary and averaging modes. The key contribution is discussed regarding speech intelligibility improvements in the presence of noise, where identifying the type of noise is crucial. Finally, conclusions deliver the overall findings and future work directions.

Cytowania

  • 1

    CrossRef

  • 0

    Web of Science

  • 1

    Scopus

Autorzy (3)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 99 razy
Wersja publikacji
Accepted albo Published Version
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1121/10.0016495
Licencja
Copyright (2022 Acoustical Society of America)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
Journal of the Acoustical Society of America nr 152, strony 3595 - 3605,
ISSN: 0001-4966
Język:
angielski
Rok wydania:
2022
Opis bibliograficzny:
Kąkol K., Korvel G., Kostek B.: Noise profiling for speech enhancement employing machine learning models// Journal of the Acoustical Society of America -Vol. 152,iss. 6 (2022), s.3595-3605
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1121/10.0016495
Źródła finansowania:
  • Publikacja bezkosztowa
Weryfikacja:
Politechnika Gdańska

wyświetlono 83 razy

Publikacje, które mogą cię zainteresować

Meta Tagi