Abstrakt
This paper aims to propose a noise profiling method that can be performed in near real-time based on machine learning (ML). To address challenges related to noise profiling effectively, we start with a critical review of the literature background. Then, we outline the experiment performed consisting of two parts. The first part concerns the noise recognition model built upon several baseline classifiers and noise signal features derived from the Aurora noise dataset. This is to select the best-performing classifier in the context of noise profiling. Therefore, a comparison of all classifier outcomes is shown based on effectiveness metrics. Also, confusion matrices prepared for all tested models are presented. The second part of the experiment consists of selecting the algorithm that scored the best, i.e., Naïve Bayes, resulting in an accuracy of 96.76%, and using it in a noise-type recognition model to demonstrate that it can perform in a stable way. Classification results are derived from the real-life recordings performed in momentary and averaging modes. The key contribution is discussed regarding speech intelligibility improvements in the presence of noise, where identifying the type of noise is crucial. Finally, conclusions deliver the overall findings and future work directions.
Cytowania
-
1
CrossRef
-
0
Web of Science
-
1
Scopus
Autorzy (3)
Cytuj jako
Pełna treść
- Wersja publikacji
- Accepted albo Published Version
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1121/10.0016495
- Licencja
- Copyright (2022 Acoustical Society of America)
Słowa kluczowe
Informacje szczegółowe
- Kategoria:
- Publikacja w czasopiśmie
- Typ:
- artykuły w czasopismach
- Opublikowano w:
-
Journal of the Acoustical Society of America
nr 152,
strony 3595 - 3605,
ISSN: 0001-4966 - Język:
- angielski
- Rok wydania:
- 2022
- Opis bibliograficzny:
- Kąkol K., Korvel G., Kostek B.: Noise profiling for speech enhancement employing machine learning models// Journal of the Acoustical Society of America -Vol. 152,iss. 6 (2022), s.3595-3605
- DOI:
- Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1121/10.0016495
- Źródła finansowania:
-
- Publikacja bezkosztowa
- Weryfikacja:
- Politechnika Gdańska
wyświetlono 83 razy
Publikacje, które mogą cię zainteresować
An Attempt to Create Speech Synthesis Model That Retains Lombard Effect Characteristics
- G. Korvel,
- O. Kurasova,
- B. Kostek
Detecting Lombard Speech Using Deep Learning Approach
- K. Kąkol,
- G. Korvel,
- G. Tamulevicius
- + 1 autorów
Evaluation of Lombard Speech Models in the Context of Speech in Noise Enhancement
- G. Korvel,
- K. Kąkol,
- O. Kurasova
- + 1 autorów