Rapid redesign of multiband antennas with respect to operating conditions and material parameters of substrate - Publikacja - MOST Wiedzy

Wyszukiwarka

Rapid redesign of multiband antennas with respect to operating conditions and material parameters of substrate

Abstrakt

This work addresses geometry parameter scaling of multi-band antennas for Internet of Things applications. The presented approach is comprehensive and permits re-design of the structure with respect to both the operating frequencies and material parameters of the dielectric substrate. A two-step procedure is developed with the initial design obtained from an inverse surrogate model constructed using a set of appropriately prepared reference points, and the final design identified through an iterative correction procedure. The latter is necessary in order to account for limited accuracy of the surrogate. The proposed approach is validated using a dual-band microstrip patch antenna scaled over wide ranges of operating frequencies (1.5 GHz to 2.5 GHz for the lower band, and 5.0 GHz to 6.0 GHz for the upper band), substrate thickness (0.7 mm to 1.5 mm), and substrate permittivity (2.5 to 3.5). The re-design cost corresponds to only up to three electromagnetic simulations of the antenna at hand. Reliability of the process is confirmed through experimental validation of the fabricated antenna prototypes.

Cytowania

  • 2

    CrossRef

  • 0

    Web of Science

  • 2

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Copyright (2020 John Wiley & Sons, Ltd)

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS nr 33,
ISSN: 0894-3370
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Kozieł S., Bekasiewicz A.: Rapid redesign of multiband antennas with respect to operating conditions and material parameters of substrate// INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS -Vol. 33,iss. 6 (2020), s.2723-
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1002/jnm.2723
Bibliografia: test
  1. J. Nocedal and S. Wright, Numerical Optimization, 2nd edition, Springer, New York, 2006. otwiera się w nowej karcie
  2. D.B. Rodrigues, P.F. Maccarini, S. Salahi, T.R. Oliveira, P.J.S. Pereira, P. Limao-Vieira, B.W. Snow, D. Reudink, and P.R. Stauffer, -Design and optimization of an ultra wideband and compact microwave antenna for radiometric monitoring of brain temperature,‖ IEEE Trans. otwiera się w nowej karcie
  3. Biomedical Eng., vol. 61, no. 7, pp. 2154-2160, 2014. otwiera się w nowej karcie
  4. Y.H. Chiu and Y.S. Chen, -Multi-objective optimization of UWB antennas in impedance matching, gain, and fidelity factor,‖ Int. Symp. Ant. Prop., pp. 1940-1941, 2015. otwiera się w nowej karcie
  5. Y.S. Chen, -Frequency-domain and time-domain performance enhancements of ultra- wideband antennas using multiobjective optimization techniques,‖ European Ant. Prop. Conf., pp. 1-4, 2016. otwiera się w nowej karcie
  6. S. K. Goudos, K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, -Self-adaptive differential evolution applied to real-valued antenna and microwave design problems,‖ IEEE Trans. Antennas Propag., vol. 59, no. 4, pp. 1286-1298, Apr. 2011. otwiera się w nowej karcie
  7. A.A. Al-Azza, A.A. Al-Jodah, and F.J. Harackiewicz, -Spide monkey optimization: a novel technique for antenna optimization,‖ IEEE Ant. Wireless Prop. Lett., vol. 15, pp. 1016-1019, 2016. otwiera się w nowej karcie
  8. M.A. El Sabbagh, M.H. Bakr, and J.W. Bandler, -Adjoint higher order sensitivities for fast full-wave optimization of microwave filters,‖ IEEE Trans. Microw Theory Tech., vol. 54, pp. 3339-3351, 2006. otwiera się w nowej karcie
  9. S. Koziel and S. Ogurtsov, -Antenna design by simulation-driven optimization. Surrogate- based approach,‖ Springer, 2014. otwiera się w nowej karcie
  10. J.A. Easum, J. Nagar, and D.H. Werner, -Multi-objective surrogate-assisted optimization applied to patch antenna design,‖ Int. Symp. Ant. Prop., pp. 339-340, San Diego, 2017. otwiera się w nowej karcie
  11. D.I.L. de Villiers, I. Couckuyt, and T. Dhaene, -Multi-objective optimization of reflector antennas using kriging and probability of improvement,‖ Int. Symp. Ant. Prop., pp. 985-986, San Diego, 2017. otwiera się w nowej karcie
  12. J.W. Bandler, Q.S. Cheng, S.A. Dakroury, A.S. Mohamed, M.H. Bakr, K. Madsen, and J. Søndergaard, -Space mapping: the state of the art,‖ IEEE Trans. Microwave Theory Tech., vol. 52, no. 1, pp. 337-361, 2004. otwiera się w nowej karcie
  13. D. Echeverría Ciaurri and P. Hemker, -Manifold mapping: A two-level optimization technique,‖ Computing and Visualization in Science, vol. 11, pp. 193-206, 2006.
  14. C. Zhang, F. Feng, V. Gongal-Reddy, Q.J. Zhang, and J.W. Bandler, -Cognition-Driven Formulation of Space Mapping for Equal-Ripple Optimization of Microwave Filters,‖ IEEE Trans. Microwave Theory Tech., vol. 63, no. 7, pp. 2154-2165, 2015. otwiera się w nowej karcie
  15. S. Koziel, and A. Bekasiewicz, -Inverse surrogate modeling for low-cost geometry scaling of microwave and antenna structures,‖ Eng. Comp., vol. 33, no. 4, pp. 1095-1116, 2016. otwiera się w nowej karcie
  16. S. Koziel and A. Bekasiewicz, -Rapid dimension scaling of dual-band antennas using variable-fidelity EM models and inverse surrogates,‖ J. EM Waves and Applications, vol.31, no. 3, pp. 297-308, 2017. otwiera się w nowej karcie
  17. K.R. Jha, B. Bukhari, C. Singh, G. Mishra and S. K. Sharma, -Compact planar multistandard MIMO antenna for IoT applications,‖ IEEE Trans. Ant. Prop., vol. 66, no. 7, pp. 3327-3336, 2018. otwiera się w nowej karcie
  18. Rahman, M.; Park, J.-D. The Smallest Form Factor UWB Antenna with Quintuple Rejection Bands for IoT Applications Utilizing RSRR and RCSRR. Sensors 2018, 18, 911. otwiera się w nowej karcie
  19. Rahman, M.; NaghshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Resonator Based Switching Technique between Ultra Wide Band (UWB) and Single/Dual Continuously Tunable-Notch Behaviors in UWB Radar for Wireless Vital Signs Monitoring. Sensors 2018, 18, 3330. otwiera się w nowej karcie
  20. Januszkiewicz, Ł.; Di Barba, P.; Jopek, Ł.; Hausman, S. Many-Objective Automated Optimization of a Four-Band Antenna for Multiband Wireless Sensor Networks. Sensors 2018, 18, 3309. otwiera się w nowej karcie
  21. CST Microwave Studio, ver. 2013, Dassault Systems, 10 rue Marcel Dassault, CS 40501, Vélizy-Villacoublay Cedex, France, 2013.
  22. M.H. Bakr and N.K. Nikolova, -An adjoint variable method for time-domain transmission-line modeling with fixed structured grids,‖ IEEE Trans. Microwave Theory Tech., vol. 52, no. 2, pp. 554-559, 2004. otwiera się w nowej karcie
  23. A.I.J. Forrester, and A.J. Keane, -Recent advances in surrogate-based optimization,‖ Prog. Aerospace Sci., vol. 45, pp. 50-79, 2009. otwiera się w nowej karcie
  24. N.V. Queipo, R.T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P.K. Tucker, -Surrogate-based analysis and optimization,‖ Prog. Aerospace Sci., vol. 41, no. 1, pp. 1-28, Jan. 2005. otwiera się w nowej karcie
  25. F. Feng, C. Zhang, W. Na, J. Zhang, W. Zhang, and Q. Zhang, -Adaptive feature zero assisted surrogate-based EM optimization for microwave filter design,‖ IEEE Microwave Wireless Comp. Lett., vol. 29, no. 1, pp. 2-4, 2019. otwiera się w nowej karcie
  26. F. E. Rangel-Patiño, J. L. Chávez-Hurtado, A. Viveros-Wacher, J. E. Rayas-Sánchez and N. otwiera się w nowej karcie
  27. Hakim, -System margining surrogate-based optimization in post-silicon validation,‖ IEEE Trans. Microwave Theory Techn., vol. 65, no. 9, pp. 3109-3115, 2017.
  28. H. Kabir, Y. Wang, M. Yu, and Q.J. Zhang, -Neural network inverse modeling and applications to microwave filter design,‖ IEEE Trans. Microwave Theory Tech., vol. 56, no. 4, pp. 867-879, 2008. otwiera się w nowej karcie
  29. G. Gosal, E. Almajali, D. McNamara, and M. Yagoub, -Transmitarray antenna design using forward and inverse neural network modeling,‖ IEEE Ant. Wireless Prop. Lett., vol. 15, pp. 1483-1486, 2016. otwiera się w nowej karcie
  30. M. Caenepeel, F. Ferranti, and Y. Rolain, -Efficient and automated generation of multidimensional design curves for coupled-resonator filters using system identification and metamodels,‖ Int. Conf. Synthesis, Modeling, Analysis Sim. Methods App. Circuit Design, Lisbon, 2016. otwiera się w nowej karcie
  31. P.S. Kildal, E. Olsen, and J.A. Aas, -Losses, sidelobes, and cross polarization caused by feed- support struts in reflector antennas: design curves,‖ IEEE Trans. Ant. Prop., vol. 36, no. 2, pp. 182-190, 1988. otwiera się w nowej karcie
  32. A. Mukhopadhay, S. Bhattacharya, R. Roy, S. Fodder and S. Sengupta, -Design of microstrip patch antenna enriched with curve-fitting approach,‖ Industrial Automation Electromechanical Eng. Conf., Bangkok, pp. 214-216, 2017. otwiera się w nowej karcie
  33. M. Narducci, E. Figueras, I. Gracia, L. Fonseca, J. Santander, and C. Cane, -Dimension- scaling of microcantilevers resonators,‖ Spanish Conf. Electron Devol., Madrid, pp. 209-211, 2007. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 82 razy

Publikacje, które mogą cię zainteresować

Meta Tagi