Reduction of the Multipath Propagation Effect in a Hydroacoustic Channel Using Filtration in Cepstrum - Publikacja - MOST Wiedzy

Wyszukiwarka

Reduction of the Multipath Propagation Effect in a Hydroacoustic Channel Using Filtration in Cepstrum

Abstrakt

During data transmission in a hydroacoustic channel, one of the problems is the multipath propagation effect, which leads to a decrease in the transmission parameters and sometimes completely prevents it. Therefore, we have attempted to develop a method, which is based on a recorded hydroacoustic signal, that allows us to recreate the original (generated) signal by eliminating the multipath effect. In our method, we use cepstral analysis to eliminate replicas of the generated signal. The method has been tested in simulation and during measurements in a real environment. Additionally, the influence of the method on data transmission in the hydroacoustic channel was tested. The obtained results confirmed the usefulness of the application of the developed method and improved the quality of data transmission by reducing the multipath propagation effect.

Cytowania

  • 3

    CrossRef

  • 3

    Web of Science

  • 3

    Scopus

Autorzy (4)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 5 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuły w czasopismach
Opublikowano w:
SENSORS nr 20, strony 1 - 17,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2020
Opis bibliograficzny:
Czapiewska A., Łuksza A., Studański R., Żak A.: Reduction of the Multipath Propagation Effect in a Hydroacoustic Channel Using Filtration in Cepstrum// SENSORS -Vol. 20,iss. 3 (2020), s.1-17
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s20030751
Bibliografia: test
  1. Stojanovic, M.; Preisig, J. Underwater acoustic communication channels: Propagation models and statistical characterization. IEEE Commun. Mag. 2009, 47, 84-89. otwiera się w nowej karcie
  2. Jastrzębski, S. Acoustic communications in shallow waters. Hydroacoustics 2005, 8, 61-68.
  3. Salamon, R. Hydrolocation systems; otwiera się w nowej karcie
  4. Gdańskie Towarzystwo Naukowe: Gdańsk, Poland, 2006. (In Polish).
  5. Kaczorek, P.; Studanski, R.; Zak, A. Stand for determining the impulse response of a hydroacoustic channel.
  6. Kosanovic B. Echo Cancellation Part 1: The Basics and Acoustic Echo Cancellation. Available online: https://www.eetimes.com/document.asp?doc_id=1277615 (accessed on 2 September 2019) otwiera się w nowej karcie
  7. Kuech, F.; Kellermann, W. Orthogonalized power filters for nonlinear acoustic echo cancellation. Signal Process. 2006, 86, 1168-1181. otwiera się w nowej karcie
  8. Naylor, P.A.; Cui, J.; Brookes, M. Adaptive algorithms for sparse echo cancellation, Signal Process. 2006, 86, 1182-1192. otwiera się w nowej karcie
  9. Comminiello, D.; Scarpiniti, M.; Azpicueta-Ruiz, L.A.; Arenas-García, J.; Uncini, A. Nonlinear Acoustic Echo Cancellation Based on Sparse Functional Link Representations, IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1172-1183. otwiera się w nowej karcie
  10. Pushpalatha, G.S.; Kumar, M.N. Echo Cancellation Algorithms using Adaptive Filters: A Comparative Study. Int. J. Recent Trends Eng. Technol. 2014, 10, 36-43.
  11. Comon P.; Jutten C. Handbook of Blind Source Separation: Independent Component Analysis and Applications; Academic Press: Oxford, UK, 2010.
  12. Aylward R. Echo cancellation by deforming sound waves through inverse convolution, In Computational Acoustics and Its Environmental Applications II; Brebbia, C.A., Kenny, J.M., Ciskowski, R.D., Eds.; WIT Press: Southampton SO40 7AA, UK, 1997; Volume 28.
  13. Huemmer C.; Hofmann, C.; Maas, R.; Schwarz, A.; Kellermann, W. The elitist particle filter based on evolutionary strategies as novel approach for nonlinear acoustic echo cancellation. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4-9 May 2014; pp. 1315-1319. otwiera się w nowej karcie
  14. Park, J.; Chang, J.-H. Frequency-Domain Volterra Filter Based on Data-Driven Soft Decision for Nonlinear Acoustic Echo Suppression. IEEE Signal Process Lett. 2014, 21, 1088-1092. otwiera się w nowej karcie
  15. Paleologua, C.; Benestyb, J.; Ciochinăa, S. Widely linear general Kalman filter for stereophonic acoustic echo cancellation. Signal Process. 2014, 94, 570-575. otwiera się w nowej karcie
  16. Drugman, T.; Bozkurt, B; Dutoit, T. Complex Cepstrum-based Decomposition of Speech for Glottal Sourc Estimation. 2019. Available online: https://arxiv.org/abs/1912.12602 (accessed on 13 January 2020). otwiera się w nowej karcie
  17. Dackermann, U.; Smith, W.A.; Randall, R.B. Damage identification based on response-only measurements using cepstrum analysis and artificial neural networks. Struct. Health Monit. 2014, 13, 430-444. otwiera się w nowej karcie
  18. Fang, S.-H.; Tsao, Y.; Hsiao, M.-J.; Chen, J.-Y.; Lai, Y.-H.; Lin, F.-C..; Wang, C.-T. Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach. J. Voice 2019, 33, 634-641. otwiera się w nowej karcie
  19. Lalitha, S.; Geyasruti, D.; Narayanan, R.; Shravani, M. Emotion Detection Using MFCC and Cepstrum Features. Procedia Comput. Sci. 2015, 70, 29-35. otwiera się w nowej karcie
  20. Zhu, Y.; Foo, V.; Fook, S.; Jianzhong, E.H.; Maniyeri, J.; Guan, C.; Zhang, H.; Jiliang, E.P.; Biswas, J. Heart rate estimation from FBG sensors using cepstrum analysis and sensor fusion. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26-30 August 2014; pp. 5365-5368.
  21. Chuang, C.; Chang, T.; Chiang, Y.; Chang, F. Adaptive filtering for heart rate estimation using cepstrum technique. In Proceedings of the 2016 International Conference on System Science and Engineering (ICSSE), Puli, Taiwan, 7-9 July 2016; pp. 1-3. otwiera się w nowej karcie
  22. Bazán, I.; Ramírez-García, A.; Cruz-Prieto, J. Micro-Displacement Detection using Echo-Signal Cepstrum Analysis for Medical Diagnosis. In Proceedings of the 2018 15th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), Mexico City, Mexico, 5-7 September 2018; pp. 1-4. otwiera się w nowej karcie
  23. Tang Z.; Zhou F.; Zheng W. Pulse position modulation spread spectrum underwater acoustic communication system using N-H sequence. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5-8 August 2016; pp. 1-4.
  24. Mazurek, R.; Lasota, H. Application of maximum-length sequences to impulse response measurement of hydroacoustic communications systems. Hydroacoustics 2007, 10, 123-130.
  25. Studanski, R.; Zak, A. Results of impulse response measurements in real conditions. J. Mar. Eng. Technol. 2017, 16, 337-343. otwiera się w nowej karcie
  26. Schmidt, J.; Kochańska, I.; Schmidt, A. Measurement of impulse response of shallow water communication channel by correlation method. Hydroacoustics 2017, 20, 149-158.
  27. Zielinski, T.P. Digital Signal Processing; WKŁ: Warsaw, Poland, 2007. (In Polish)
  28. Ferguson, E.L.; Williams S.B.; Jin C.T. Improved Multipath Time Delay Estimation Using Cepstrum Subtraction. In Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, United Kingdom, United Kingdom, 12-17 May 2019; pp. 551-555. otwiera się w nowej karcie
  29. Childers, D.G.; Skinner, D.P.; Kemerait, R.C. The Cepstrum: A Guide to Processing, Proc. IEEE 1977, 65, 1428-1443. otwiera się w nowej karcie
  30. Oppenheim, A.V.; Schafer, R.W. From Frequency to Quefrency: A History of the Cepstrum, IEEE Signal Process Mag. 2004, 21, 95-99. otwiera się w nowej karcie
  31. Jastrzębski, S. Sound Propagation in shallow water. Hydroacoustics 2004, 7, 79-88.
  32. Yunlu, W.; Zhendong, W. Blind detection on echo hiding based on cepstrums. In Proceedings of the 2009 IEEE Youth Conference on Information, Computing and Telecommunication, Beijing, China, 20-21 September 2009; pp. 235-238.
  33. Schmidt, J.; Zachariasz, K.; Salamon, R. Underwater communication system for shallow water using modified MFSK modulation. Hydroacoustics 2005, 8, 179-184.
  34. Wesołowski K. Basics of digital telecommunications systems; WKŁ: Warsaw, Poland, 2006. (In Polish)
Weryfikacja:
Politechnika Gdańska

wyświetlono 29 razy

Publikacje, które mogą cię zainteresować

Meta Tagi