Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration - Publikacja - MOST Wiedzy


Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration


In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy (1HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration.


  • 2 5


  • 2 3

    Web of Science

  • 2 4


Cytuj jako

Pełna treść

pobierz publikację
pobrano 137 razy
Wersja publikacji
Accepted albo Published Version
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Publikacja w czasopiśmie
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
Materials Science & Engineering C-Materials for Biological Applications nr 75, strony 671 - 681,
ISSN: 0928-4931
Rok wydania:
Opis bibliograficzny:
Kucińska-Lipka J., Gubańska I., Strankowski M., Cieśliński H., Filipowicz N., Janik H.: Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration// Materials Science & Engineering C-Materials for Biological Applications. -Vol. 75, (2017), s.671-681
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.msec.2017.02.052
Bibliografia: test
  1. S.J.S. Flora, Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure, Oxidative Med. Cell. Longev. 2 (4) (2009) 191-206. otwiera się w nowej karcie
  2. J. Szymańska-Pasternak, A. Janicka, J. Bober, Vitamin C as a weapon against cancer (in polish), Onkol. Prak. Klin 7 (1) (2011) 9-23.
  3. M. Taikarimi, S.A. Ibrahim, Antimicrobial activity of ascorbic acid alone or in combi- nation with lactic acid on Escherichia coli 0157: H7 in laboratory medium and carrot juice, Food Control 22 (2011) 801-804. otwiera się w nowej karcie
  4. Q. Myrvik, W.A. Volk, Comparative study of the antibacterial properties of ascorbic acid and reductogenic compounds, J. Bacteriol. 68 (5) (1954) 622-626. otwiera się w nowej karcie
  5. S. Li, K.B. Taylor, S.J. Kelly, M.J. Jedrzejas, Vitamin C inhibits the enzymatic activity of Streptococcus pneumoniae hyaluronate lyase, J. Biol. Chem. 276 (18) (2001) 15125. otwiera się w nowej karcie
  6. L. Cursino, E. Chartone-Souza, A.M.A. Nascimento, Synergic interaction between ascorbic acid and antibiotics against Pseudomonas aeruginosa, Braz. Arch. Biol. Technol. 48 (3) (2005) 379-384. otwiera się w nowej karcie
  7. J. Kucinska-Lipka, I. Gubanska, H. Janik, M. Pokrywczynska, T. Drewa, L-ascorbic acid modified poly(ester urethane)s as a suitable candidates for soft tissue engineering applications, React. Funct. Polym. 97 (2015) 105-115. otwiera się w nowej karcie
  8. Fig. 8. Sensitivity of obtained PUR and AA-PUR on selected microorganisms a) S. aureus, b) P. aeruginosa, c) E. coli. otwiera się w nowej karcie
  9. M. Bakar, A. Białkowska, J. Szymańska, Synthesis and evaluation of mechanical and thermal properties of segmented condensation polyurethanes, Plast., Rubber Compos. Macromol. Eng. 42950 (2013) 203-209. otwiera się w nowej karcie
  10. J.Y. Cherng, M.F. Shih, H. Talsma, W.E. Hennink, Polyurethane-based drug delivery systems, Int. J. Pharm. 450 (2013) 145. otwiera się w nowej karcie
  11. I. Dudlinska-Molak, J. Ryszkowska, Kompozyty PUR/CaCO 3 do zastosowań jako podłoża do hodowli tkank kostnych (PUR/CaCO 3 composites for application as a bone tissue culture substrates) (in polish), Czasopismo Techniczne, (Technical Transactions), 3, 2009, p. 81. otwiera się w nowej karcie
  12. X. Gao, Y. Guo, Y. Tian, S. Li, S. Zhou, Z. Wang, Synthesis and characterization of poly- urethane/zinc borate nanocomposites, Colloids Surf. A Physicochem. Eng. Asp. 384 (2011) 2-8. otwiera się w nowej karcie
  13. J. Kucińska-Lipka, I. Gubanska, H. Janik, M. Sienkiewicz, Fabrication of polyurethane and polyurethane based composite fibers by the electrospinning technique for soft tissue engineering of cardiovascular system, Mater. Sci. Eng., C 46 (2015) 166-176. otwiera się w nowej karcie
  14. M. Włoch, J. Datta, Synthesis, structure and properties of poly(ester-urethane-urea)s synthesized using biobased diamine, J. Renew. Mater. 4 (1) (2016) 72-77. otwiera się w nowej karcie
  15. S. Gogolewski, Selected topic in biomedical polyurethanes. A review, Colloid Polym. Sci. 267 (1989) 757-785. otwiera się w nowej karcie
  16. J. Khandare, T. Minko, Polymer-drug conjugates: progress in polymeric prodrugs, Prog. Polym. Sci. 31 (2006) 359-397. otwiera się w nowej karcie
  17. M. Mahkam, N. Sharifi-Sanjani, Preparation of biodegradable polyurethanes as a therapeutic agent, Polym. Degrad. Stab. 80 (2) (2003) 199-202. otwiera się w nowej karcie
  18. B.D. Ratner, Biomedical applications of synthetic polymers, in: A.G. Bevington, S.L. Aggarwal (Eds.), Comprehensive Polymer Science, Pergamon Press Oxford 1987, pp. 201-247. otwiera się w nowej karcie
  19. G.J. Grant, K. Vermeulen, M.I. Zakowski, M. Stenner, H. Turndorf, L. Langerman, Prolonged analgesia and decreased toxicity with liposomal morphine in a mouse model, Anesth. Analg. 79 (4) (1994) 706-709. otwiera się w nowej karcie
  20. J. Cheng, R. Dong, J. Ge, B. Guo, P.X. Ma, Biocompatible, biodegradable and electroactive polyurethane-urea elastomers with tunable hydrophilicity for skeletal muscle tissue engineering, Appl. Mater. Interfaces 7 (51) (2015) 28273-28285. otwiera się w nowej karcie
  21. J.E. McBane, S. Sharifpoor, K. Cai, R.S. Labow, J.P. Santerre, Biodegradation and in vivo biocompatibility of a degradable, poly/hydrophobic/ionic polyurethane for tissue engineering applications, Biomaterials 32 (26) (2011) 6034-6044. otwiera się w nowej karcie
  22. L. Piao, Z. Dai, M. Deng, X. Chen, X. Jing, Synthesis and characterization of PCL/PEG/ PCL triblock copolymers by using calcium catalyst, Polymer 44 (7) (2003) 2025-2031. otwiera się w nowej karcie
  23. S.A. Guelcher, K.M. Gallagher, J.E. Didier, D.B. Klinedinst, J.S. Doctor, A.S. Goldstein, G.L. Wilkes, E.J. Beckman, J.O. Hollinger, Synthesis of biocompatible segmented poly- urethanes from aliphatic diisocyanates and diurea diol chain extenders, Acta Biomater. 1 (2005) 471-484. otwiera się w nowej karcie
  24. M. Szycher, V.L. Poirier, D.J. Dempsey, Development of an aliphatic biomedical-grade polyurethane elastomer, J. Elastomers Plast. 15 (2) (1983) 81-95. otwiera się w nowej karcie
  25. I.H.L. Pereira, E. Ayres, P.S. Patricio, A.M. Goes, V.S. Gomide, Photopolymerizable and injectable polyurethanes for biomedical applications: synthesis and biocompatibili- ty, Acta Biomater. 6 (2010) 3056-3066. otwiera się w nowej karcie
  26. B.R. Barrioni, S.M. de Carvalho, R.L. Orefice, A.A.R. de Oliveira, M. de Magalhaes Pereira, Synthesis and characterization of biodegradable polyurethane films based on HDI with hydrolyzable crosslinked bonds and homogenous structure for bio- medical applications, Mater. Sci. Eng. C 52C (2015) 22-30. otwiera się w nowej karcie
  27. X.J. Loh, K.K. Tan, X. Li, J. Li, The in vitro hydrolysis of poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol), Biomaterials 27 (9) (2006) 1841-1850. otwiera się w nowej karcie
  28. J.W. Lee, J.A. Gardella Jr., In vitro hydrolytic surface degradation of poly(glycolic acid): role of the surface segregated amorphous region in the induction period of bulk erosion, Macromolecules 34 (12) (2001) 3928-3937. otwiera się w nowej karcie
  29. J.M. Anderson, A. Rodriguez, D.T. Chang, Foregin body reaction to biomaterials, Semin. Immunol. 20 (2) (2008) 86-100. otwiera się w nowej karcie
  30. Z. Sheikh, A.S. Khan, N. Roohpour, M. Glogauer, I. Rehman, Protein adsorption capa- bility on polyurethane and modified-polyurethane membrane for periodical guided tissue regeneration applications, Mater. Sci. Eng. C 68 (1) (2016) 267-275. otwiera się w nowej karcie
  31. M.B. Gorbet, M.V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes, Biomaterials 25 (26) (2004) 5681-5703. otwiera się w nowej karcie
  32. M. Szycher, Fundamental properties and test methods, High Performance of Bioma- terials. A Comprehensive Guide to Medical and Pharmaceutical Applications, Technomic Publishing Co. Inc. 1991, p. 84. otwiera się w nowej karcie
  33. K.D. Park, Y.S. Kim, D.K. Han, Y.H. Kim, E.H.B. Lee, H. Suh, K.S. Choi, Bacterial adhesion in PEG modified polyurethane surfaces, Biomaterials 19 (1998) 851-859. otwiera się w nowej karcie
  34. A. Korematsu, Y. Takemoto, T. Nakaya, H. Inoue, Synthesis, characterization and platelet adhesion of segmented polyurethanes grafted phospholipid analogous vinyl monomer on surface, Biomaterials 23 (2002) 263-271. otwiera się w nowej karcie
  35. A.E. Aksoy, V. Hasirci, N. Hasirci, Surface modification of polyurethanes with cova- lent immobilization of heparin, Macromol. Symp. 169 (2008) 145-153. otwiera się w nowej karcie
  36. S.A.A. Najafbadi, H. Keshvari, Y. Ganji, M. Tahriri, M. Ashuri, Chtosan/heparin surface modified polyacrylic acid grafted polyurethane film by two step plasma treatment, Surf. Eng. 28 (9) (2012) 710.
  37. D.J. Schneider, Anti-platelet therapy: glycoprotein IIb-IIIa antagonists, Br. J. Clin. Pharmacol. 72 (4) (2011) 672-682. otwiera się w nowej karcie
  38. H.J. Kwon, S. Park, Local delivery of antiproliferative agents via stents, Polymer 6 (2014) 755-775. otwiera się w nowej karcie
  39. J. Zhang, B.A. Doll, E.J. Beckman, J.O. Hollinger, A biodegradable polyurethane- ascorbic acid scaffold for bone tissue engineering, J. Biomed. Mater. Res. 67A (2003) 389-400. otwiera się w nowej karcie
  40. J. Kucinska-Lipka, I. Gubanska, M. Sienkiewicz, Thermal and mechanical properties of polyurethanes modified with L-ascorbic acid. J. Therm. Anal. Calorim. (2016) otwiera się w nowej karcie
  41. S.M. Cetina-Diaz, L.H. Chan-Chan, R.F. Vargas-Coronado, J.M. Cervantes-Uc, P. Wuintana-Owen, Physicochemical characterization of segmented polyurethanes prepared with glutamine or ascorbic acid as chain extenders and their hydroxyap- atite composites, J. Mater. Chem. 2 (2014) 1966. otwiera się w nowej karcie
  42. D.A. Paduch, J. Niedzielski, Biomedical materials. Part I: definition of the biological film (biofilm) and physicochemical bases of the adhesion of organic substances to biomaterials, Chir. Pol. (Pol. Surg.) 7 (3) (2005) 180-191.
  43. J. Brzeska, A. Heimowska, W. Sikorska, L. Jasińska-Walc, M. Kowalczul, M. Rutkowska, Chemical and enxymatic hydrolysis of polyurethane/polylactide blends, Int. J. Polym. Sci. 2015 (2015) 795985. otwiera się w nowej karcie
  44. R.K. Roeder, Mechanical characterization of biomaterials, in: A. Bandyopadhyay, A. Bose (Eds.), Characterization of Biomaterials, Elsevier 2013, p. 94. otwiera się w nowej karcie
  45. L. Wei, G. Li, Y.D. Yan, R. Pradhan, J.O. Kim, Q. Quan, Lipid emulsions as a rug delivery system for breviscapine: formulation development and optimization, Arch. Pharm. Res. 35 (6) (2012) 1037-1043. otwiera się w nowej karcie
  46. S.A. Guelcher, A. Srinivasan, J.E. Dumas, J.E. Didier, S. McBride, J.O. Hollinger, Synthe- sis, mechanical properties, biocompatibility and degradation of polyurethane net- works from lysine polyisocyanates, Biomaterials 29 (2008) 1762-1775. otwiera się w nowej karcie
  47. D. Punnakitikashem, J.U. Truong, K.T. Menon, Y. Nguyen, Y. Hong, Electrospun biode- gradable elastic polyurethane scaffolds with dipyridamole release for small diame- ter vascular grafts, Acta Biomater. 10 (2014) 4618-4628. otwiera się w nowej karcie
  48. M.E. Davey, G.A. O'Toole, Microbial biofilms: from ecology to molecular genetics, Macrobiol. Mol. Biol. Res. 64 (4) (2000) 847-867. otwiera się w nowej karcie
  49. H. Janik, A. Balas, Chemical structures and physical properties of curred segmental polyurethanes, Polimery 54 (3) (2009) 195. otwiera się w nowej karcie
  50. H. Janik, M. Sienkiewicz, J. Kucinska-Lipka, Handbook of thermoset plastics, in: Dodiuk, Goodman (Eds.),Chapter 9 Thermo and Chemoset Polyurethanes, third ed. 2014, pp. 253-296. otwiera się w nowej karcie
  51. A. Karchin, F.I. Simonovsky, B.D. Ratner, J.E. Sanders, Melt electrospinning of biode- gradable polyurethane scaffold, Acta Biomater. 7 (9) (2011) 3277-3284. otwiera się w nowej karcie
  52. J. Wang, Z. Zheng, Q. Wang, P. Du, J. Shi, X. Wang, Synthesis and characterization of biodegradable polyurethanes based on L-cysteine/cysteine and poly(e- caprolactone), J. Biomed. Polym. Sci. 128 (2013) 4047-4057. otwiera się w nowej karcie
  53. M. Selvakumar, S.K. Jaganathan, G.B. Nado, S. Chattopadhyay, Synthesis and charac- terization of novel polycarbonate based polyurethane/polymer wrapped hydroxy- apatite nanocomposites: mechanical properties, osteoconductivity and biocompatibility, J. Biomed. Nanotechnol. 10 (2014) 1-15. otwiera się w nowej karcie
  54. H. Wang, Z. Feng, W. Fang, M. Yuan, M. Khan, Co-electrospun blends of PU and PEG as potential biocompatible scaffolds-diameter vascular tissue engineering, Mater. Sci. Eng. C 32 (2012) 2306-2315. otwiera się w nowej karcie
  55. J. Kucinska-Lipka, I. Gubanska, H. Janik, Gelatin-modified polyurethanes for soft tis- sue scaffold, Sci. World J. 2013 (2013) 4503132. otwiera się w nowej karcie
  56. C.Y. Panicker, H.T. Varghese, D. Philip, FT-IR, FT-Raman and SERS spectra of vitamin C, Spectrochim. Acta A 65 (3-4) (2006) 802-804.
  57. R.M. Silverstein, F.X. Webster, D.J. Kiemle, D.L. Bryce, Spectrometric Identification of Organic Compounds, eighth ed. Wiley, 2014.
  58. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, third ed. Wiley, 2004. otwiera się w nowej karcie
  59. I. Yilgor, E. Yilgor, I.G. Guler, T.C. Ward, G.L. Wilkies, FTIR investigation of the influ- ence of diisocyanate symmetry on the morphology development in model segment- ed polyurethanes, Polymer 47 (2006) 4105-4114. otwiera się w nowej karcie
  60. A. Huang, J.A. Vita, R.C. Venema, J.F. Jr Keaney, Ascorbic acid enhances endothelial nitric-oxide synthase activity by increasing intracellular tetrahydrobiopterin, J. Biol. Chem. 275 (2000) 173999. otwiera się w nowej karcie
  61. U.R. Heinrich, I. Fisher, J. Brieger, A. Rumelin, I. Schmidtmann, H. Li, W.J. Mann, K. Helling, Ascorbic acid reduces noise-induced nitric oxide production in the guinea pig ear, Laryngoscope 118 (5) (2008) 837-842. otwiera się w nowej karcie
  62. V.L. Jakovljevic, D.Z. Djordjevic, D.M. Djuric, The effect of vitamin C and nitric oxide synthase inhibition on coronary flow and oxidative stress markers in isolated rat heart, Gen. Physiol. Biophys. 30 (3) (2011) 293-300. otwiera się w nowej karcie
  63. H. Janik, J. Vancso, The influence of hard segment crosslinking on the morphology and mechanical properties of segmented poly(ester-urethane)s, Polimery 50 (2) (2005) 139-142. otwiera się w nowej karcie
  64. H. Janik, Electron-beam irradiation in TEM of hard-segment homopolymers and polyurethanes with different hard-segment, Macromol. Rapid Commun. 25 (12) (2004) 1167-1170. otwiera się w nowej karcie
  65. J.C. Middleton, A.J. Tipton, Synthetic biodegradable polymers as orthopedic devices, Biomaterials 21 (23) (2000) 2335-2346. otwiera się w nowej karcie
  66. S. Bose, M. Roy, A. Bandyopadhyay, Recent advances in bone tissue engineering scaf- folds, Trends Biotechnol. 30 (10) (2012) 546-554. otwiera się w nowej karcie
  67. X. Liu, W. Chen, C.T. Gustafson, A.L. Miller, B.A. Waletzki, M.J. Yaszemski, L. Lu, Tun- able tissue scaffold fabricated by in situ crosslink phase separation system, RSC Adv. 5 (2015) 100824. otwiera się w nowej karcie
  68. D.W. Hutchmacher, Scaffold-based bone engineering by using rapid prototyping technologies, in: J.B. Bartolo (Ed.), Virtual and Rapid Manufacturing, Advanced Re- search in Virtual and Rapid Prototyping, Taylor & Francis Group 2008, p. 65. otwiera się w nowej karcie
Politechnika Gdańska

wyświetlono 95 razy

Publikacje, które mogą cię zainteresować

Meta Tagi