The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels - Publikacja - MOST Wiedzy

Wyszukiwarka

The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels

Abstrakt

The paper presents the results of investigation of the influence of plastic deformation on the magnetic properties of martensitic steel (P91 grade). The properties of the hysteresis loops as well as of the Barkhausen effect (BE) signal are analysed for both tensile and compressive loading up to ε = 10% of plastic deformation. The choice of the steel and of the deformation range is unique, since for such combination one can expect high residual stresses (both compressive and tensile) in the material that does not exhibit saturation of the BE intensity as a function of elastic stress. The obtained relationships show that for the low level of deformation the dislocation density changes may play a dominant role, yet for higher deformation level the residual stress becomes a dominant factor. It leads to the strong decrease of the BE signal for tensile deformation and an increase for the case of compression. It agrees well with the assumption that the tensile plastic deformation results in the compressive stresses appearance in the soft (magnetically active) subregions of the material whereas for the compression one can expect a residual stress of a tensile nature in those areas. Both deformation modes result in the increase of coercivity of the samples, yet the increase observed for the tensile deformation is significantly higher since both the residual compressive stress and increase of dislocation density have a strong effect on the material coercivity. The change of the hysteresis loops steepness agrees well with the notion of the dominant role of residual stresses too.

Cytowania

  • 1 5

    CrossRef

  • 0

    Web of Science

  • 1 7

    Scopus

Cytuj jako

Pełna treść

pobierz publikację
pobrano 24 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
JOURNAL OF NONDESTRUCTIVE EVALUATION nr 36, strony 1 - 8,
ISSN: 0195-9298
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Piotrowski L., Chmielewski M., Kowalewski Z.: The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels// JOURNAL OF NONDESTRUCTIVE EVALUATION. -Vol. 36, nr. 10 (2017), s.1-8
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1007/s10921-016-0389-x
Bibliografia: test
  1. Feaugas, X.: On the origin of the tensile flow stress in the stainless steel AISI 316L at 300K: back stress and effec- tive stress. Acta Mater. 47, 3617-3631 (1999). doi:10.1016/ S1359-6454(99)00222-0 otwiera się w nowej karcie
  2. Mughrabi, H.: Deformation-induced long-range internal stresses and lattice plane misorientations and the role of geometrically nec- essary dislocations. Philos. Mag. 86, 4037-4054 (2006). doi:10. 1080/14786430500509054 otwiera się w nowej karcie
  3. Mughrabi, H.: Dual role of deformation-induced geometrically necessary dislocations with respect to lattice plane misorientations and/or long-range internal stresses. Acta Mater. 54, 3417-3427 (2006). doi:10.1016/j.actamat.2006.03.047 otwiera się w nowej karcie
  4. Piotrowski, L., Augustyniak, B., Chmielewski, M., Hristoforou, E.V., Kosmas, K.: Evaluation of Barkhausen noise and magne- toacoustic emission signals properties for plastically deformed Armco iron. IEEE Trans. Magn. 46(5), 239-242 (2010). doi:10. 1109/TMAG.2009.2034020 otwiera się w nowej karcie
  5. Makowska, K., Kowalewski, Z.L., Augustyniak, B., Piotrowski, L.: Determination of mechanical properties of P91 steel by means of magnetic Barkhausen emission. J. Theor. Appl. Mech. 52, 181-188 (2014)
  6. Stefanita, C.G., Atherton, D.L., Clapham, L.: Plastic ver- sus elastic deformation effects on magnetic Barkhausen noise in steel. Acta Mater. 48, 3545-3551 (2000). doi:10.1016/ S1359-6454(00)00134-8 otwiera się w nowej karcie
  7. Piotrowski, L., Augustyniak, B., Chmielewski, M., Kowalewski, Z.: Multiparameter analysis of the Barkhausen noise signal and its application for the assessment of plastic deformation level in 13HMF grade steel. Meas. Sci. Technol. 21, 115702 (2010). doi:10. 1088/0957-0233/21/11/115702 otwiera się w nowej karcie
  8. Kleber, X., Vincent, A.: On the role of residual internal stresses and dislocations on Barkhausen noise in plastically deformed steel. NDT&E Int. 37, 439-445 (2004). doi:10.1016/j.ndteint.2003.11. 008 otwiera się w nowej karcie
  9. Makar, J.M., Tanner, B.K.: The effect of plastic deformation and residual stress on the permeability and magnetostriction of steels. J. Magn. Magn. Mater. 222, 291-304 (2000). doi:10.1016/ S0304-8853(00)00558-8 otwiera się w nowej karcie
  10. Kuleev, V.G., Tsar'kova, T.P., Nichipuruk, A.P.: Specific features of the behavior of the coercive force in low-carbon plastically deformed steels. Russ. J. Nondestruct. Test. 41, 285-295 (2005). doi:10.1007/s11181-005-0168-8 otwiera się w nowej karcie
  11. Kuleev, V.G., Tsar'kova, T.P., Sazhina, E.Y., Doroshek, A.S.: On the influence of plastic deformation of low-carbon ferro- magnetic steels on the changes in the shapes of their hysteresis loops and the field dependences of the differential permeabil- ity. Russ. J. Nondestruct. Test. 51, 738-749 (2015). doi:10.1134/ S1061830915120062 otwiera się w nowej karcie
  12. Stupakov, O., Tomas, I., Pal'a, J., Bydzovsky, J., Bosansky, J., Smida, T.: Traditional, Barkhausen and MAT magnetic response to plastic deformation of low-carbon steel. Czech. J. Phys. 54, D47- D50 (2004) otwiera się w nowej karcie
  13. Samimi, A.A., Krause, T.W., Clapham, L.: Stress response of magnetic barkhausen noise in submarine hull steel: a compar- ative study. J. Nondestruct. Eval. 35, 32 (2016). doi:10.1007/ s10921-016-0348-6 otwiera się w nowej karcie
  14. Dietrich, L., Socha, G., Kowalewski, Z.L.: Anti-buckling fixture for large deformation tension-compression cyclic loading of thin metal sheets. Strain 50, 174-183 (2014). doi:10.1111/str.12078 otwiera się w nowej karcie
  15. Makar, J.M., Tanner, B.K.: The in situ measurement of the effect of plastic deformation on the magnetics properties of steel. Part I-Hysteresis loops and magnetostriction. J. Magn. Magn. Mater. 184, 193-208 (1998). doi:10.1016/S0304-8853(97)01129-3 otwiera się w nowej karcie
  16. ElBidwihy, H., Burgy, C.D., Della Torre, E.: Stress-associated changes in the magnetic properties of high strength steel. Phys- ica B 435, 16-20 (2014). doi:10.1016/j.physb.2013.05.005 otwiera się w nowej karcie
  17. Hoffmann, B., Vöhringer, O., Macherauch, E.: Effect of com- pressive plastic deformation on mean lattice strains, disloca- tion densities and flow stresses of martensitically hardened steels. Mater. Sci. Eng. A 319, 299-303 (2001). doi:10.1016/ S0921-5093(01)00978-9 otwiera się w nowej karcie
  18. Piotrowski, L., Chmielewski, M., Augustyniak, B.: The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel. J. Magn. Magn. Mater. 324, 2496-2500 (2012). doi:10.1016/j.jmmm.2012.03.021 otwiera się w nowej karcie
  19. Langman, R.: Magnetic properties of mild steel under conditions of biaxial stress. IEEE Trans. Magn. 26(4), 1246-1251 (1990). doi:10.1109/20.54015 otwiera się w nowej karcie
  20. Pearson, J., Squire, P.T., Maylin, M.G., Gore, J.G.: Biaxial stress effects on the magnetic properties of pure iron. IEEE Trans. Magn. 36(5), 3251-3253 (2000) otwiera się w nowej karcie
  21. Augustyniak, B.: Magneto-elastic phenomena and their applica- tions in non-destructive evaluation of materials. Gdansk University of Technology, Gdansk (2003)
  22. Hristoforou, E., Vourna, P., Ktena, A., Svec, P.: On the universality of the dependence of magnetic parameters on residual stress in steels. IEEE Trans. Magn. 52(5), 6201106 (2016). doi:10.1109/ TMAG.2015.2509642 otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 141 razy

Publikacje, które mogą cię zainteresować

Meta Tagi