The ILs-assisted electrochemical synthesis of TiO2 nanotubes: The effect of ionic liquids on morphology and photoactivity - Publikacja - MOST Wiedzy

Wyszukiwarka

The ILs-assisted electrochemical synthesis of TiO2 nanotubes: The effect of ionic liquids on morphology and photoactivity

Abstrakt

Facile and environmentally benign one-step titanium anodization method for TiO2 nanotubes (NTs) formation in a presence of ionic liquids (ILs) was proposed. Influence of the IL structure and its content in ethylene glycol electrolyte on morphology, surface properties and photoactivity of the TiO2 NTs was investigated. Possible interactions between IL and TiO2 NTs as well as the mechanism of NTs formation during anodic oxidation process were proposed. The outer diameter, wall thickness, and length of the IL-NTs were found to be proportionally related with increasing length of the hydrocarbon chain in the imidazolium cation of the IL (from 2 to 8), IL content, anodization potential and water content up to 10 vol.%. Moreover, for the first time, the effect of the IL’s structure on the UV–vis and Vis light-induced photoactivity of the IL-TiO2 NTs was presented, and the active species (•OH and O2 •− radicals) involved in the photocatalytic reaction of phenol degradation were determined. The sample that exhibited the highest photoactivity under Vis irradiation (0.63 mol dm−3 min−1) and greatest amounts of generated •OH was TiO2 NTs prepared at anodization potential 90V in the electrolyte containing 0.1 mol of 1- octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4] (represented by F− content) and 10 vol.% of water. Phenol degradation rate remained at level about 1.50 and 0.42 mol dm−3 min−1 after 60 min of UV–vis and Vis irradiation after four cycles in the presence of [OMIM][BF4] and thus obtained IL-NTs exhibited photostability. The reaction proceeds under mild reaction conditions, is step economical and provides one-dimensional nanostructures that meet the specifications for use in diverse photocatalytic applications.

Cytowania

  • 2 4

    CrossRef

  • 2 4

    Web of Science

  • 2 4

    Scopus

Autorzy (6)

Cytuj jako

Pełna treść

pobierz publikację
pobrano 54 razy
Wersja publikacji
Accepted albo Published Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
APPLIED CATALYSIS B-ENVIRONMENTAL nr 214, strony 100 - 113,
ISSN: 0926-3373
Język:
angielski
Rok wydania:
2017
Opis bibliograficzny:
Mazierski P., Łuczak J., Lisowski W., Winiarski M., Klimczuk T., Zaleska-Medynska A.: The ILs-assisted electrochemical synthesis of TiO2 nanotubes: The effect of ionic liquids on morphology and photoactivity// APPLIED CATALYSIS B-ENVIRONMENTAL. -Vol. 214, (2017), s.100-113
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.1016/j.apcatb.2017.05.005
Bibliografia: test
  1. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chem. Rev. 107 (2007) 2891-2959. otwiera się w nowej karcie
  2. U. Diebold, The surface science of titanium dioxide, Surf. Sci. Rep. 48 (2003) 53-229. otwiera się w nowej karcie
  3. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimensional nanostructures: synthesis, characterization, and applications, Adv. Mater. 15 (2003) 353-389. otwiera się w nowej karcie
  4. M. Nischk, P. Mazierski, Z. Wei, K. Siuzdak, N.A. Kouame, E. Kowalska, H. Remita, A. Zaleska-Medynska, Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu AgCu and Bi nanoparticles obtained via radiolytic reduction, Appl. Surf. Sci. 387 (2016) 89-102. otwiera się w nowej karcie
  5. P. Mazierski, J. Nadolna, W. Lisowski, M.J. Winiarski, M. Gazda, M. Nischk, T. Klimczuk, A. Zaleska-Medynska, Effect of irradiation intensity and initial pollutant concentration on gas phase photocatalytic activity of TiO2 nanotube arrays, Catal. Today 284 (2017) 19-26. otwiera się w nowej karcie
  6. P. Mazierski, A. Malankowska, M. Kobylański, M. Diak, M. Kozak, Winiarski, MJ, T. Klimczuk, W. Lisowski, G. Nowaczyk, A. Zaleska-Medynska, Photocatalytically active TiO2/Ag2O nanotube arrays interlaced with silver nanoparticles obtained from the one-step anodic oxidation of Ti-Ag alloys, ACS Catal. 7 (2017) 2753-2764. otwiera się w nowej karcie
  7. P. Roy, D. Kim, K. Lee, E. Spiecker, P. Schmuki, TiO2 nanotubes and their application in dye-sensitized solar cells, Nanoscale 2 (2010) 45-59. otwiera się w nowej karcie
  8. J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska, Ionic liquids for nano-and microstructures preparation. Part 1: properties and multifunctional role, Adv. Colloid Interface Sci. 230 (2016) 13-28. otwiera się w nowej karcie
  9. J. Łuczak, M. Paszkiewicz, A. Krukowska, A. Malankowska, A. Zaleska-Medynska, Ionic liquids for nano-and microstructures preparation. Part 2: application in synthesis, Adv. Colloid Interface Sci. 227 (2016) 1-52. otwiera się w nowej karcie
  10. J. Dupont, J.D. Scholten, On the structural and surface properties of transition-metal nanoparticles in ionic liquids, Chem. Soc. Rev. 39 (2010) 1780-1804. otwiera się w nowej karcie
  11. Z. He, P. Alexandridis, Nanoparticles in ionic liquids: interactions and organization, Phys. Chem. Chem. Phys. 17 (2015) 18238-18261. otwiera się w nowej karcie
  12. Y. Yu, Y. Jiang, M. Tian, L. Yang, H. Yan, S. Sheng, N-doped TiO2 nanotube arrays: synthesis by anodization in an ionic liquid ([BMIM] BF 4) and assessment of photocatalytic property, Rare Metal Mater. Eng. 45 (2016) 561-566. otwiera się w nowej karcie
  13. S. Yu, B. Liu, Q. Wang, Y. Gao, Y. Shi, X. Feng, X. An, L. Liu, J. Zhang, Ionic liquid assisted chemical strategy to TiO2 hollow nanocube assemblies with surface-fluorination and nitridation and high energy crystal facet exposure for enhanced photocatalysis, ACS Appl. Mater. Interfaces 6 (2014) 10283-10295. otwiera się w nowej karcie
  14. R. Ramanathan, V. Bansal, Ionic liquid mediated synthesis of nitrogen, carbon and fluorine-codoped rutile TiO2 nanorods for improved UV and visible light photocatalysis, RSC Adv. 5 (2015) 1424-1429. otwiera się w nowej karcie
  15. K. Yoo, H. Choi, D. Dionysiou, Ionic liquid assisted preparation of nanostructured TiO2 particles, Chem. Commun. (2004) 2000-2001. otwiera się w nowej karcie
  16. S. Chang, C. Lee, A salt-assisted approach for the pore-size-tailoring of the ionic-liquid-templatedTiO2 photocatalysts exhibiting high activity, Appl. Catal. B: Environ. 132-133 (2013) 219-228. otwiera się w nowej karcie
  17. M. Paszkiewicz, J. Łuczak, W. Lisowski, P. Patyk, A. Zaleska-Medynska, The ILs-assisted solvothermal synthesis of TiO2 spheres: the effect of ionic liquids on morphology and photoactivity of TiO2, Appl. Catal. B: Environ. 184 (2016) 223-237. otwiera się w nowej karcie
  18. H. Kaper, M.-G. Willinger, I. Djerdj, S. Gross, M. Antonietti, B.M. Smarsly, IL-assisted synthesis of V2O5 nanocomposites and VO2 nanosheets, J. Mater. Chem. 18 (2008) 5761-5769. otwiera się w nowej karcie
  19. A. Serrà, E. Gómez, J.F. López-Barbera, J. Nogués, E. Vallés, Green electrochemical template synthesis of CoPt nanoparticles with tunable size, composition, and magnetism from microemulsions using an ionic liquid (bmimPF6), ACS Nano 8 (2014) 4630-4639. otwiera się w nowej karcie
  20. E.E. Zvereva, S. Grimme, S.A. Katsyuba, V.V. Ermolaev, D.A. Arkhipova, N. Yan, V.A. Miluykov, O.G. Sinyashin, A. Aleksandrov, Solvation and stabilization of palladium nanoparticles in phosphonium-based ionic liquids: a combined infrared spectroscopic and density functional theory study, Phys. Chem. Chem. Phys. 16 (2014) 20672-20680. otwiera się w nowej karcie
  21. J. Piekart, J. Łuczak, Transport properties of microemulsions with ionic liquid apolar domains as a function of ionic liquid content, RSC Adv. 6 (2016) 92605-92620. otwiera się w nowej karcie
  22. IUPAC, Ionic Liquids Database, Ionic Liquids Database, Physical and Biophysical Chemistry Division, 2003. otwiera się w nowej karcie
  23. J.M. Macak, P. Schmuki, Anodic growth of self-organized anodic TiO2 nanotubes in viscous electrolytes, Electrochim. Acta 52 (2006) 1258-1264. otwiera się w nowej karcie
  24. A. Zielińska-Jurek, M. Walicka, A. Tadajewska, I. Łącka, M. Gazda, A. Zaleska, Preparation of Ag/Cudoped titanium (IV) oxide nanoparticles in w/o microemulsion, Physicochem. Probl. Miner. Process. 45 (2010) 113-126. otwiera się w nowej karcie
  25. A. Zielińska-Jurek, E. Kowalska, J.W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light, Appl. Catal. B: Environ. 101 (2011) 504-514. otwiera się w nowej karcie
  26. S.E. John, S.K. Mohapatra, M. Misra, Double-wall anodic titania nanotube arrays for water photooxidation, Langmuir 25 (2009) 8240-8247. otwiera się w nowej karcie
  27. H. Wender, A.F. Feil, L.B. Diaz, C.S. Ribeiro, G.J. Machado, P. Migowski, D.E. Weibel, J. Dupont, S.R. Teixeira, Self-organized TiO2 nanotube arrays: synthesis by anodization in an ionic liquid and assessment of photocatalytic properties, ACS Appl. Mater. Interfaces 3 (2011) 1359-1365. otwiera się w nowej karcie
  28. J. Rodríguez-Carvajal, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B 192 (1993) 55-69.
  29. M. Nischk, P. Mazierski, M. Gazda, A. Zaleska, Ordered TiO2 nanotubes: the effect of preparation parameters on the photocatalytic activity in air purification process, Appl. Catal. B: Environ. 144 (2014) 674-685. otwiera się w nowej karcie
  30. M. Długokęcka, J. Łuczak,Ż. Polkowska, A. Zaleska-Medynska, The effect of microemulsion composition on the morphology of Pd nanoparticles deposited at the surface of TiO2 and photoactivity of Pd-TiO2, Appl. Surf. Sci. 405 (2017) 220-230. otwiera się w nowej karcie
  31. M. Klein, J. Nadolna, A. Gołąbiewska, P. Mazierski, T. Klimczuk, H. Remita, A. Zaleska-Medynska, The effect of metal cluster deposition route on structure and photocatalytic activity of mono-and bimetallic nanoparticles supported on TiO2 by radiolytic method, Appl. Surf. Sci. 378 (2016) 37-48. otwiera się w nowej karcie
  32. J.M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, P. Schmuki, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed. 44 (2005) 7463-7465. otwiera się w nowej karcie
  33. H. Tokuda, K. Hayamizu, K. Ishii, Abu Bin Hasan Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation, J. Phys. Chem. B 109 (2005) 6103-6110. otwiera się w nowej karcie
  34. K.N. Marsh, J.A. Boxall, R. Lichtenthaler, Room temperature ionic liquids and their mixtures-a review, Fluid Phase Equilib. 219 (2004) 93-98. otwiera się w nowej karcie
  35. N.G. Tsierkezos, I. Molinou, Thermodynamic properties of water + ethylene glycol at 283.15, 293.15, 303.15, and 313.15 K, J. Chem. Eng. Data 43 (1998) 989-993. otwiera się w nowej karcie
  36. A. Valota, D.J. LeClere, P. Skeldon, M. Curioni, S.B.T. Hashimoto, J. Kunze, P. Schmuki, G.E. Thompson, Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes, Electrochim. Acta 54 (2009) 4321-4327. otwiera się w nowej karcie
  37. A. Elsanousi, J. Zhang, H.M.H. Fadlalla, Feng Zhang, Hui Wang, Xiaoxia Ding, Zhixin Huang, Chengcun Tang, Self-organized TiO2 nanotubes with controlled dimensions by anodic oxidation, J. Mater. Sci. 43 (2008) 7219-7224. otwiera się w nowej karcie
  38. W. Zhao, W. Ma, C. Chen, J. Zhao, Z. Shuai, Efficient degradation of toxic organic pollutants with ni2O3/TiO2-xBx under visible irradiation, J. Am. Chem. Soc. 126 (2004) 4782-4783. otwiera się w nowej karcie
  39. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale 5 (2013) 3601-3614. otwiera się w nowej karcie
  40. G. Xue, Q. Dai, S. Jiang, Chemical reactions of imidazole with metallic silver studied by the use of SERS and XPS techniques, J. Am. Chem. Soc. 110 (1988) 2393-2395. otwiera się w nowej karcie
  41. G. Bhargava, R.A. Ramanarayanan, S.L. Bernasek, Imidazole-Fe interaction in an aqueous chloride medium: effect of cathodic reduction of the native oxide, Langmuir 26 (2010) 215-219. otwiera się w nowej karcie
  42. Y. Wang, G.A. Voth, Tail aggregation and domain diffusion in ionic liquids, J. Phys. Chem. B 110 (2006) 18601-18608. otwiera się w nowej karcie
  43. K.-S. Kim, D. Demberelnyamba, H. Lee, Size-selective synthesis of gold and platinum nanoparticles using novel thiol-Functionalized ionic liquids, Langmuir 20 (2003) 556-560. otwiera się w nowej karcie
  44. B. Derjaguin, L. Landau, Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes, Prog. Surf. Sci. 43 (1993) 30-59. otwiera się w nowej karcie
  45. M. Olschewski, R. Gustus, M. Marschewski, O. Höfft, F. Endres, Spectroscopic characterization of the interaction of lithium with thin films of the ionic liquid 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide, Phys. Chem. Chem. Phys. 16 (2014) 25969-25977. otwiera się w nowej karcie
  46. H. Li, J. Xing, Z. Xia, J. Chen, Preparation of extremely smooth and boron-fluorine co-doped TiO2 nanotube arrays with enhanced photoelectrochemical and photocatalytic performance, Electrochim. Acta 139 (2014) 331-336. otwiera się w nowej karcie
  47. K. Anderson, S. Cortiñas Fernández, C. Hardacre, P.C. Marr, Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and CC coupling, Inorg. Chem. Commun. 7 (2004) 73-76. otwiera się w nowej karcie
  48. M.G. Freire, C.M.S.S. Neves, I.M. Marrucho, J.A.P. Coutinho, M. Fernandes, Hydrolysis of tetrafluoroborate and hexafluorophosphate counter ions inImidazolium-based ionic liquids, J. Phys. Chem. A 114 (2010) 3744-3749. otwiera się w nowej karcie
  49. C.A. Wamser, Hydrolysis of fluoboric acid in aqueous solution, J. Am. Chem. Soc. 70 (1947) 1209-1215. otwiera się w nowej karcie
  50. N.R. Jana, L. Gearheart, C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template, Adv. Mater. 13 (2001) 1389-1393. otwiera się w nowej karcie
  51. A. Subramanian, H.-W. Wang, Effects of boron doping in TiO2 nanotubes and the performance of dye-sensitized solar cells, Appl. Surf. Sci. 258 (2012) 6479-6484. otwiera się w nowej karcie
  52. J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, P. Schmuki, TiO2 nanotubes: self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3-18. otwiera się w nowej karcie
  53. K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, P. Schmuki, Effect of electrolyte conductivity on the formation of a nanotubular TiO2 photoanode for a dye-sensitized solar cell, J. Korean Phys. Soc. 54 (2009) 1027-1031. otwiera się w nowej karcie
  54. C.D. Jaeger, A.J. Bard, Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiOp particulate systems, J. Phys. Chem. 83 (1979) 3146-3152. otwiera się w nowej karcie
  55. C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, J. Catal. 122 (1990) 178-192. otwiera się w nowej karcie
  56. Z. Liu, X. Zhang, S. Nishimoto, T. Murakami, A. Fujishima, Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays, Environ. Sci. Technol. 42 (2008) 8547-8551. otwiera się w nowej karcie
  57. A.G. Kontos, A. Katsanaki, T. Maggos, V. Likodimos, A. Ghicov, D. Kim, J. Kunze, C. Vasilakos, P. Schmuki, P. Falaras, Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes, Chem. Phys. Lett. 490 (2010) 58-62. otwiera się w nowej karcie
  58. P. Mazierski, M. Nischk, M. Gołkowska, W. Lisowski, M. Gazda, M.J. Winiarski, T. Klimczuk, A. Zaleska-Medynska, Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: the effect of applied voltage, anodization time and amount of nitrogen dopant, Appl. Catal. B: Environ. 196 (2016) 77-88. otwiera się w nowej karcie
  59. S.-J. Hsu, I.J.B. Lin, Synthesis of gold nanosheets through thermolysis of mixtures of long chain 1-alkylimidazole and hydrogen tetrachloroaurate(III), J. Chin. Chem. Soc. 56 (2009) 98-106. otwiera się w nowej karcie
  60. H.-F. Zhuang, C.-J. Lin, Y.-K. Lai, L. Sun, J. Li, Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity, Environ. Sci. Technol. 41 (2007) 4735-4740. otwiera się w nowej karcie
  61. L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: role of photogenerated charge carrier dynamics in enhancing the activity, Appl. Catal. B: Environ. 140-141 (2013) 559-587. otwiera się w nowej karcie
  62. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects, Chem. Rev. 114 (2014) 9824-9852. otwiera się w nowej karcie
  63. X. Chen, L. Liu, F. Huang, Black titanium dioxide (TiO2) nanomaterials, Chem. Soc. Rev. 44 (2015) 1861-1885. otwiera się w nowej karcie
  64. K.M. Manamela, L.C. Murulana, M.M. Kabanda, E.E. Ebenso, Adsorptive and DFT studies of some imidazolium based ionic liquids as corrosion inhibitors for zinc in acidic medium, Int. J. Electrochem. Sci. 9 (2014) 3029-3046.
  65. H.-C. Liang, X.-Z. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution, J. Hazard. Mater. 162 (2009) 1415-1422. otwiera się w nowej karcie
  66. X. Li, P. Liu, Y. Mao, M. Xing, J. Zhang, Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis, Appl. Catal. B: Environ. 164 (2015) 352-359. otwiera się w nowej karcie
  67. D. Nassoko, Y.-F. Li, H. Wang, J.-L. Li, Y.-Z. Li, Y. Yu, Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: simple preparation, mesoporous structure, and photocatalytic activity under visible light, J. Alloys Compd. 540 (2012) 228-235. otwiera się w nowej karcie
  68. P. Mazierski, W. Lisowski, T. Grzyb, M.J. Winiarski, T. Klimczuk, A. Mikołajczyk, J. Flisikowski, A. Hirsch, A. Kołakowska, T. Puzyn, A. Zaleska-Medynska, J. Nadolna, Enhanced photocatalytic properties of lanthanide-TiO2 nanotubes: an experimental and theoretical study, Appl. Catal. B: Environ. 205 (2017) 376-385. otwiera się w nowej karcie
  69. E. Grabowska, J. Reszczyńska, A. Zaleska, Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review, Water Res. 46 (2012) 5453-5471. otwiera się w nowej karcie
  70. B. Tryba, A.W. Morawski, M. Inagaki, M. Toyoda, The kinetics of phenol decomposition under UV irradiation with and without H2O2 on TiO2, FeeTiO2 and FeeCeTiO2 photocatalysts, Appl. Catal. B: Environ. 63 (2006) 215-221. otwiera się w nowej karcie
  71. B. Tryba, A.W. Morawski, M. Inagaki, M. Toyoda, Mechanism of phenol decomposition on Fe-C-TiO2 and Fe TiO2 photocatalysts via photo-Fenton process, J. Photochem. Photobiol. A: Chem. 179 (2006) 224-228. otwiera się w nowej karcie
Weryfikacja:
Politechnika Gdańska

wyświetlono 53 razy

Publikacje, które mogą cię zainteresować

Meta Tagi