TIME-DOMAIN NUMERICAL EVALUATION OF SHIP RESISTANCE AND MOTION IN REGULAR WAVES BY USING THE CFD URANS METHOD - Publikacja - MOST Wiedzy

Wyszukiwarka

TIME-DOMAIN NUMERICAL EVALUATION OF SHIP RESISTANCE AND MOTION IN REGULAR WAVES BY USING THE CFD URANS METHOD

Abstrakt

Taking into account the International Maritime Organization's (IMO) strategy to radically reduce
the GHG emitted by the shipping industry towards zero emission operation, today's assessment
of ship behavior in waves, its seakeeping characteristics and resistance, and their interrelation
with fuel consumption and emissions are one of the most attended research subjects. There are
three methods to conduct this analysis, which are Experimental Fluid Dynamics (FED), numerical
methods eg Computational Fluid Dynamics (CFD), and empirical analysis. This study shows the
results of time-domain analysis of ship motions and resistance in head sea waves by using the CFD
method, which is then verified using the experimental results.The tests were run for different
wavelengths for a KCS model. Numerical results, which are based on solving Unsteady Reynolds-
Averaged Navier-Stokes equations (URANS) show that the CFD method applied by using STAR
CCM+ can be reliable for evaluating the ship's seakeeping characteristics and resistance in waves.

Cytuj jako

Pełna treść

pobierz publikację
pobrano 64 razy
Wersja publikacji
Submitted Version
Licencja
Creative Commons: CC-BY-NC-ND otwiera się w nowej karcie

Słowa kluczowe

Informacje szczegółowe

Kategoria:
Efekty działalności twórczej
Typ:
Efekty działalności twórczej
Rok wydania:
2023
Bibliografia: test
  1. Storm-Tejsen, J., Yeh, H.Y.H., Moran, D.D., Added resistance in waves. Trans. -Soc. Nav. Archit. Mar. Eng. 81, 250-279, 1973.
  2. Fujii, H., Takahashi, T., Experimental study on the resistance increase of a ship in regular oblique waves. In: Proceedings of the 14th ITTC, pp. 351-360. Ottawa, 1975.. otwiera się w nowej karcie
  3. Nakamura, S., Naito, S., Propulsive performance of a containership in waves. J. Soc. Nav. Archit. Jpn. 15, 24-48, 1977. otwiera się w nowej karcie
  4. Kashiwagi, M., Sugimoto, K., Ueda, T., Yamasaki, K., Arihama, K., Kimura, K., Yamashita, R., Itoh, A., Mizokami, S., An analysis system for propulsive performance in waves. J. Kansai Soc. Nav. Architect. 241, 67-82, 2004.
  5. Kashiwagi, M., Hydrodynamic study on added resistance using unsteady wave analysis. J. Ship Res. 57, 220-240, 2013. otwiera się w nowej karcie
  6. Guo, B., Steen, S., Evaluation of added resistance of KVLCC2 in short waves. J. Hydrodyn. 23 (6), 709-722, 2011. otwiera się w nowej karcie
  7. Park, D.M., Lee, J., Kim, Y., Uncertainty analysis for added resistance experiment of KVLCC2 ship. Ocean Eng. 95, 143-156, 2015. otwiera się w nowej karcie
  8. Lee, J., Park, D.M., Kim, Y., Experimental investigation on the added resistance of modified KVLCC2 hull forms with different bow shapes. J. Eng. Marit. Environ. 231 (2), 395-410, 2017. otwiera się w nowej karcie
  9. Lee, J.H., Kim, B.S., Kim, Y., Study on steady flow effects in numerical computation of added resistance of ship in waves. In: 10th International Workshop on Ship and Marine Hydrodynamics, Keelung, Taiwan, 5-8 November, 2017. otwiera się w nowej karcie
  10. Joncquez, S.A.G., Second-order Forces and Moments Acting on Ships in Waves. Ph. D. Thesis. Technical University of Denmark, Denmark, 2009.
  11. Simonsen, C.D., Otzen, J.F., Nielsen, C., Stern, F., CFD prediction of added resistance of the KCS in regular head and oblique waves. In: 30th Symposium on Naval Hydrodynamics, Hobart, Tasmania, Australia, 2-7 November 2014.
  12. Stocker, M.R., Surge Free Added Resistance Tests in Oblique Wave Headings for the KRISO Container Ship Model. M.S. Thesis. The University of Iowa, 2016. otwiera się w nowej karcie
  13. Valanto, P., Hong, Y., Experimental investigation on ship wave added resistance in regular head, oblique, beam and following waves. In: Proceedings of the 25th International Ocean and Polar Engineering Conference, Big Island. Hawaii, USA, 21-26 June 2015. Gdansk University of Technology
  14. Orihara, H., Miyata, H., Evaluation of added resistance in regular incident waves by computational fluid dynamics motion simulation using an overlapping grid system. J. Mar. Sci. Technol. 8, 47-60, 2003. otwiera się w nowej karcie
  15. Guo, B.J., Steen, S., Deng, G.B., Seakeeping prediction of KVLCC2 in head waves with RANS. Appl. Ocean Res. 35, 56-67, 2012. otwiera się w nowej karcie
  16. Sadat-Hosseini, H., Wu, P., Carrica, P.M., Kim, H., Toda, H., Stern, F., CFD verification and validation of added resistance and motions of KVLCC2 with fixed and free surge in short and long head waves. Ocean Eng. 59, 240-273, 2013. otwiera się w nowej karcie
  17. Yang, K.K., Kim, Y., Numerical analysis of added resistance on blunt ships with different bow shapes in short waves. J. Mar. Sci. Technol. 22, 245-258, 2017. otwiera się w nowej karcie
  18. Faltinsen, O.M., Minsaas, K.J., Liapis, N., Skjørdal, S.O., Prediction of resistance and propulsion of a ship in a seaway. In: Proceedings of the 13th Symposium on Naval Hydrodynamics, Tokyo, Japan, pp. 505-529, 1980.
  19. MARIN, "Recommended Analysis of Speed Trials", Sea Trial Analysis JIP, 2006.
  20. Kuroda, M., Tsujimoto, M., Fujiwara, T., Ohmatsu, S., Takagi, K., Investigation on components of added resistance in short waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 8, 171-176, 2008. otwiera się w nowej karcie
  21. Kuroda, M., Tsujimoto, M., Sasaki, N., Ohmatsu, S., Takagi, K., Study on the bow shapes above the waterline in view of the powering and green-house gas emissions in actual seas. J. Eng. Marit. Environ. 226 (1), 23-35, 2012. otwiera się w nowej karcie
  22. Tsujimoto, M., Shibata, K., Kuroda, M., Takagi, K., A practical correction method for added resistance in waves. J. Jpn. Soc. Nav. Archit. Ocean Eng. 8, 141-146, 2008. otwiera się w nowej karcie
  23. Liu, S.K., Papanikolaou, A., On the prediction of added resistance of large ships in representative seaways. Ships Offshore Struct. 12, 690-696, 2017. otwiera się w nowej karcie
  24. Liu, S.K., Papanikolaou, A., Approximation of the added resistance of ships with small draft or in ballast condition by empirical formula. Proc. IME M J. Eng. Marit. Environ. 1- 14, 2017. otwiera się w nowej karcie
  25. MPEC 70/INF.30, Air Pollution and Energy Efficiency, Supplementary Information on the Draft Revised Guidelines for Determining Minimum Propulsion Power to Maintain the Manoeuvrability of Ships in Adverse Conditions. IMO Report, 2016. otwiera się w nowej karcie
  26. Yang, K.K., Kim, Y., Jung, Y.W., Enhancement of asymptotic formula for added resistance of ships in short wave. Ocean Eng. 148, 211-222, 2018. otwiera się w nowej karcie
  27. Maruo, H., The drift of a body floating on waves. J. Ship Res. 4, 1-10, 1960.
  28. Newman, J.N., The drift force and moment on ships in waves. J. Ship Res. 11, 51-60, 1967. otwiera się w nowej karcie
  29. Joncquez, S.A.G., "Comparison Results from S-OMEGA and AEGIR." FORCE Technology Report No. FORCE107-24345, p. 21, 2011. otwiera się w nowej karcie
  30. Kim, K.H., Kim, Y., Numerical study on added resistance of ships by using a time-domain Rankine panel method. Ocean Eng. 38, 1357-1367, 2011. otwiera się w nowej karcie
  31. Kim, K.H., Seo, M.K., Kim, Y., Numerical analysis on added resistance of ships. Int. J. Offshore Polar Eng. 21, 21-29, 2012.
  32. Sadeghi. M, Zerratgar.H, Investigation on the effect of anti-pitch fins for reducing the motion and acceleration of ships using computational fluid dynamics. Ocean Engineering 267 (2023) 112965. https://doi.org/10.1016/j.oceaneng.2022.112965, 2023. otwiera się w nowej karcie
  33. Pletcher, R. H., J. C. Tannehill, and D. A. Anderson, Computational Fluid Mechanics and Heat Transfer. 3rd ed. Boca Raton, Fla: CRC Press, 2013.
  34. Tennekes, H. and J. L. Lumley, A First Course in Turbulence. Cambridge, Massachusetts: The MIT Press. Chap. 2 and 5, 1972. otwiera się w nowej karcie
  35. Choi, J., Yoon, S.B., Numerical simulations using momentum source wave-maker applied to RANS equation model. Coast. Eng. 56, 1043-1060, 2009. otwiera się w nowej karcie
  36. Park, J.C., Kim, M.H., Miyata, H., Fully non-linear free-surface simulations by a 3D viscous numerical wave tank. Int. J. Numer. Methods Fluid. 29, 685-703, 1999. otwiera się w nowej karcie
  37. Peric, R., Abdel-Maksoud, M., Reliable Damping of Free Surface Waves in Numerical Simulations, 63. Ship Technology Research, 2016. otwiera się w nowej karcie
  38. Tucker, P., Turbulence. In Advanced Computational Fluid and Aerodynamics (Cambridge Aerospace Series, pp. 260-361). Cambridge: Cambridge University Press. doi:10.1017/CBO9781139872010.006, 2016. otwiera się w nowej karcie
  39. Menter, F. R., M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model. In: Turbulence, Heat and Mass Transfer 4(1), pp. 625-632, 2003.
  40. Procedures, I.T.T.C., Guidelines, Uncertainty Analysis in CFD Verification and Validation, 7, 5-03-01-01, 2008.
Weryfikacja:
Brak weryfikacji

wyświetlono 45 razy

Publikacje, które mogą cię zainteresować

Meta Tagi