Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics - Publikacja - MOST Wiedzy

Wyszukiwarka

Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics

Abstrakt

Design of antennas for the Internet of Things (IoT) applications requires taking into account several performance figures, both electrical (e.g., impedance matching) and field (gain, radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of stringent specifications necessitates the development of topologically complex structures described by a large number of geometry parameters that need tuning. Conventional optimization procedures are typically too expensive when the antenna is evaluated using high-fidelity electromagnetic (EM) analysis, otherwise required to ensure accuracy. This paper proposes a novel surrogate-assisted optimization algorithm for computationally efficient design optimization of antenna structures. In the paper, the optimization of antenna input characteristic is presented, specifically, minimization of the antenna reflection coefficient in a given bandwidth. Our methodology involves variable-fidelity EM simulations as well as a dedicated procedure to reduce the cost of estimating the antenna response gradients. The latter is based on monitoring the variations of the antenna response sensitivities along the optimization path. The procedure suppresses the finite-differentiation-based sensitivity updates for variables that exhibit stable gradient behavior. The proposed algorithm is validated using three compact wideband antennas and demonstrated to outperform both the conventional trust region algorithm and the pattern search procedure, as well as surrogate-based procedures while retaining acceptable design quality.

Cytowania

  • 6

    CrossRef

  • 4

    Web of Science

  • 6

    Scopus

Informacje szczegółowe

Kategoria:
Publikacja w czasopiśmie
Typ:
artykuł w czasopiśmie wyróżnionym w JCR
Opublikowano w:
SENSORS nr 1806, strony 1 - 12,
ISSN: 1424-8220
Język:
angielski
Rok wydania:
2019
Opis bibliograficzny:
Kozieł S., Pietrenko-Dąbrowska A.: Variable-Fidelity Simulation Models and Sparse Gradient Updates for Cost-Efficient Optimization of Compact Antenna Input Characteristics// SENSORS. -Vol. 1806, (2019), s.1-12
DOI:
Cyfrowy identyfikator dokumentu elektronicznego (otwiera się w nowej karcie) 10.3390/s19081806
Bibliografia: test
  1. Caytan, O.; Lemey, S.; Agneessens, S.; Vande Ginste, D.; Demeester, P.; Loss, C.; Salvado, R.; Rogier, H. Half-mode substrate-integrated-waveguide cavity backed slot antenna on cork substrate. Ant. Wirel. Propag. Lett. 2016, 15, 162-165. [CrossRef] otwiera się w nowej karcie
  2. Bashir, U.; Jha, K.R.; Mishra, G.; Singh, G.; Sharma, S.K. Octahedron-shaped linearly polarized antenna for multistandard services including RFID and IoT. Trans. Ant. Propag. 2017, 65, 3364-3373. [CrossRef] otwiera się w nowej karcie
  3. Zhang, J.; Shen, Z. Compact and high-gain UHF/UWB RFID reader antenna. Trans. Ant. Propag. 2017, 65, 5002-5010. [CrossRef] otwiera się w nowej karcie
  4. MMao, Y.; Guo, S.; Chen, M. Compact dual-band monopole antenna with defected ground plane for Internet of things. Iet. Microw. Ant Propag. 2018, 12, 1332-1338. [CrossRef] otwiera się w nowej karcie
  5. SShafique, K.; Khawaja, B.A.; Daniyal Khurram, M.; Maaz Sibtain, S.; Siddiqui, Y.; Mustaqim, M.; Chattha, H.T.; Yang, X. Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications. IEEE Access 2018, 6, 30932-30941. [CrossRef] otwiera się w nowej karcie
  6. Lemey, S.; Castel, T.; Van Torre, P.; Vervust, T.; Vanfleteren, J.; Demeester, P.; Vande Ginste, D.; Rogier, H. Threefold rotationally symmetric SIW antenna array for ultra-short-range MIMO communication. IEEE Trans. Ant. Propag. 2016, 64, 1689-1699. [CrossRef] otwiera się w nowej karcie
  7. Narbudowicz, A.; Ammann, M.J. Low-cost multimode patch antenna for dual MIMO and enhanced localization use. IEEE Trans. Ant. Propag. 2018, 66, 405-408. [CrossRef] otwiera się w nowej karcie
  8. Su, Z.; Klionovski, K.; Bilal, R.M.; Shamim, A. A dual band additively manufactured 3-D antenna on package with near-isotropic radiation pattern. IEEE Trans. Ant. Propag. 2018, 66, 3295-3305. [CrossRef] otwiera się w nowej karcie
  9. Liu, H.; Cheng, Y.; Yan, M. Electrically small loop antenna standing on compact ground in wireless sensor package. IEEE Ant. Wirel. Propag. Lett. 2016, 15, 76-79. [CrossRef] otwiera się w nowej karcie
  10. Lizzi, L.; Ferrero, F. Use of ultra-narrow band miniature antennas for internet-of-things applications. Electr. Lett. 2015, 51, 1964-1966. [CrossRef] otwiera się w nowej karcie
  11. Dong, Y.; Choi, J.; Itoh, T. Folded strip/slot antenna with extended bandwidth for WLAN application. IEEE Ant. Wirel. Propag. Lett. 2017, 16, 673-676. [CrossRef] otwiera się w nowej karcie
  12. Li, G.; Huang, Y.; Gao, G.; Wei, X.; Tian, Z.; Bian, L. A handbag zipper antenna for the applications of body-centric wireless communications and Internet of Things. IEEE Trans. Ant. Propag. 2017, 65, 5137-5146. [CrossRef] otwiera się w nowej karcie
  13. Jha, K.R.; Bukhari, B.; Singh, C.; Mishra, G.; Sharma, S.K. Compact planar multistandard MIMO antenna for IoT applications. IEEE Trans. Ant. Propag. 2018, 66, 3327-3336. [CrossRef] otwiera się w nowej karcie
  14. Fernandez Pantoja, M.; Rubio Bretones, A.; Gomez Martin, R. Benchmark antenna problems for evolutionary optimization algorithms. IEEE Trans. Ant. Propag. 2018, 55, 1111-1121. [CrossRef] otwiera się w nowej karcie
  15. Chamaani, S.; Abrishamian, M.S.; Mirtaheri, S.A. Time-domain design of UWB Vivaldi antenna array using multiobjective particle swarm optimization. IEEE Ant. Wirel. Prop. Lett. 2010, 9, 666-669. [CrossRef] otwiera się w nowej karcie
  16. Darvish, A.; Ebrahimzadeh, A. Improved fruit-fly optimization algorithm and its applications in antenna array synthesis. IEEE Trans. Ant. Prop. 2018, 66, 1756-1766. [CrossRef] otwiera się w nowej karcie
  17. Goudos, S.K.; Siakavara, K.; Samaras, T.; Vafiadis, E.E.; Sahalos, J.N. Self-adaptive differential evolution applied to real-valued antenna and microwave design problems. IEEE Trans. Ant. Propag. 2011, 59, 1286-1298. [CrossRef] otwiera się w nowej karcie
  18. El-Hana Bouchekara, H.R.; Orlandi, A.; Al-Qdah, M.; de Paulis, F. Most valuable player algorithm for circular antenna arrays optimization to maximum sideloba levels reduction. IEEE Trans. Ant. Propag. 2018, 60, 1655-1661.
  19. El Sabbagh, M.A.; Bakr, M.H.; Bandler, J.W. Adjoint higher order sensitivities for fast full-wave optimization of microwave filters. IEEE Trans. Microw. Theory Tech. 2006, 54, 3339-3351. [CrossRef] otwiera się w nowej karcie
  20. Ghassemi, M.; Bakr, M.; Sangary, N. Antenna design exploiting adjoint sensitivity-based geometry evolution. Iet Microw. Ant. Prop. 2013, 7, 268-276. [CrossRef] otwiera się w nowej karcie
  21. Toivanen, J.I.; Rahola, J.; Makinen, R.A.E.; Jarvenpaa, S.; Yla-Oijala, P. Gradient-based antenna shape optimization using spline curves. Ann. Rev.Prog. Appl. Comp. Electromagnet. 2010, 1, 908-913. otwiera się w nowej karcie
  22. CST Microwave Studio, Ver. 2018; Dassault Systemes: Vélizy, France, 2018.
  23. Koziel, S.; Ogurtsov, S. Antenna Design by Simulation-Driven Optimization. Surrogate-Based Approach; Springer: New York, NY, USA, 2014. otwiera się w nowej karcie
  24. Koziel, S.; Bekasiewicz, A. Multi-Objective Design of Antennas Using Surrogate Models; World Scientific: Singapore, 2016. otwiera się w nowej karcie
  25. Simpson, T.W.; Pelplinski, J.D.; Koch, P.N.; Allen, J.K. Metamodels for computer-based engineering design: Survey and recommendations. Eng. Comput. 2001, 17, 129-150. [CrossRef] otwiera się w nowej karcie
  26. Koziel, S.; Leifsson, L. Simulation-Driven Design by Knowledge-Based Response Correction Techniques; Springer: New York, NY, USA, 2016. otwiera się w nowej karcie
  27. Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goel, T.; Vaidynathan, R.; Tucker, P.K. Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 2005, 41, 1-28. [CrossRef] otwiera się w nowej karcie
  28. Chavez-Hurtado, J.L.; Rayas-Sanchez, J.E. Polynomial-based surrogate modeling of RF and microwave circuits in frequency domain exploiting the multinomial theorem. IEEE Trans. Microwave Theory Tech. 2016, 64, 4371-4381. [CrossRef] otwiera się w nowej karcie
  29. Angiulli, G.; Cacciola, M.; Versaci, M. Microwave devices and antennas modelling by support vector regression machines. IEEE Trans. Magn. 2007, 43, 1589-1592. [CrossRef] otwiera się w nowej karcie
  30. Kabir, H.; Wang, Y.; Yu, M.; Zhang, Q.J. Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech. 2008, 56, 867-879. [CrossRef] otwiera się w nowej karcie
  31. De Villiers, D.I.L.; Couckuyt, I.; Dhaene, T. Multi-objective optimization of reflector antennas using kriging and probability of improvement. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9-14 July 2017; otwiera się w nowej karcie
  32. Easum, J.A.; Nagar, J.; Werner, D.H. Multi-objective surrogate-assisted optimization applied to patch antenna design. In Proceedings of the 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA, 9-14 July 2017; pp. 339-340. otwiera się w nowej karcie
  33. Cheng, Q.S.; Koziel, S.; Bandler, J.W. Simplified space mapping approach to enhancement of microwave device models. Int. J. RF Microwave Comput.-Aided Eng. 2006, 16, 518-535. [CrossRef] otwiera się w nowej karcie
  34. Tu, S.; Cheng, Q.S.; Zhang, Y.; Bandler, J.W.; Nikolova, N.K. Space mapping optimization of handset antennas exploiting thin-wire models. IEEE Trans. Ant. Propag. 2013, 61, 3797-3807. [CrossRef] otwiera się w nowej karcie
  35. Su, Y.; Li, J.; Fan, Z.; Chen, R. Shaping optimization of double reflector antenna based on manifold mapping. In Proceedings of the 2017 International Applied Computational Electromagnetics Society Symposium (ACES), Suzhou, China, 1-4 August 2017; pp. 1-2.
  36. Koziel, S.; Unnsteinsson, S.D. Expedited design closure of antennas by means of trust-region-based adaptive response scaling. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1099-1103. [CrossRef] otwiera się w nowej karcie
  37. Koziel, S. Computationally efficient multi-fidelity multi-grid design optimization of microwave structures. App. Comput. Electromagnet. Soc. J. 2010, 25, 578-586.
  38. Koziel, S.; Bandler, J.W.; Cheng, Q.S. Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microwave Theory Tech. 2010, 58, 2166-2174. [CrossRef] otwiera się w nowej karcie
  39. Conn, A.R.; Gould, N.I.M.; Toint, P.L. Trust Region Methods; SIAM: Philadelphia, PA, USA, 2000. otwiera się w nowej karcie
  40. Koziel, S.; Bekasiewicz, A. Low-cost multi-objective optimization of antennas using Pareto front exploration and response features. In Proceedings of the IEEE International Symposium on Antennas and Propagation (APS-URSI), Fajardo, Puerto-Rico, 26 June-1 July 2016. otwiera się w nowej karcie
  41. Alsath, M.G.N.; Kanagasabai, M. Compact UWB monopole antenna for automotive communications. IEEE Trans. Ant. Prop. 2015, 63, 4204-4208. [CrossRef] otwiera się w nowej karcie
  42. Haq, M.A.; Koziel, S.; Cheng, Q.S. EM-driven size reduction of UWB antennas with ground plane modifications. In Proceedings of the International Applied Computational Electromagnetics Society Symposium (ACES), Shuzou, China, 1-4 August 2017. © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Weryfikacja:
Politechnika Gdańska

wyświetlono 56 razy

Publikacje, które mogą cię zainteresować

Meta Tagi