Filtry
wszystkich: 8
Wyniki wyszukiwania dla: PERFECT GRAPHS
-
Some variations of perfect graphs
PublikacjaWe consider (ψk−γk−1)-perfect graphs, i.e., graphs G for which ψk(H) =γk−1(H) for any induced subgraph H of G, where ψk and γk−1 are the k -path vertex cover number and the distance (k−1)-domination number, respectively. We study (ψk−γk−1)-perfect paths, cycles and complete graphs for k≥2. Moreover, we provide a complete characterisation of (ψ2−γ1)-perfect graphs describing the set of its forbidden induced subgraphs and providing...
-
Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
PublikacjaGiven two types of graph theoretical parameters ρ and σ, we say that a graph G is (σ, ρ)- perfect if σ(H) = ρ(H) for every non-trivial connected induced subgraph H of G. In this work we characterize (γw, τ )-perfect graphs, (γw, α′)-perfect graphs, and (α′, τ )-perfect graphs, where γw(G), τ (G) and α′(G) denote the weakly connected domination number, the vertex cover number and the matching number of G, respectively. Moreover,...
-
All graphs with paired-domination number two less than their order
PublikacjaLet G=(V,E) be a graph with no isolated vertices. A set S⊆V is a paired-dominating set of G if every vertex not in S is adjacent with some vertex in S and the subgraph induced by S contains a perfect matching. The paired-domination number γp(G) of G is defined to be the minimum cardinality of a paired-dominating set of G. Let G be a graph of order n. In [Paired-domination in graphs, Networks 32 (1998), 199-206] Haynes and Slater...
-
Comparing phylogenetic trees using a minimum weight perfect matching
PublikacjaA phylogenetic tree represents historical evolutionary relationshipbetween different species or organisms. There are various methods for reconstructing phylogenetic trees.Applying those techniques usually results in different treesfor the same input data. An important problem is to determinehow distant two trees reconstructed in such a wayare from each other. Comparing phylogenetic trees is alsouseful in mining phylogenetic information...
-
Properties of the triset metric for phylogenetic trees
Publikacjathe following paper presents a new polynomial time metric for unrootedphylogenetic trees (based on weighted bipartite graphs and the method ofdetermining a minimum perfect matching) and its properties. also many its properties are presented.
-
Optimal edge-coloring with edge rate constraints
PublikacjaWe consider the problem of covering the edges of a graph by a sequence of matchings subject to the constraint that each edge e appears in at least a given fraction r(e) of the matchings. Although it can be determined in polynomial time whether such a sequence of matchings exists or not [Grötschel et al., Combinatorica (1981), 169–197], we show that several questions about the length of the sequence are computationally intractable....
-
On a matching distance between rooted phylogenetic trees
PublikacjaThe Robinson–Foulds (RF) distance is the most popular method of evaluating the dissimilarity between phylogenetic trees. In this paper, we define and explore in detail properties of the Matching Cluster (MC) distance, which can be regarded as a refinement of the RF metric for rooted trees. Similarly to RF, MC operates on clusters of compared trees, but the distance evaluation is more complex. Using the graph theoretic approach...
-
Total domination in versus paired-domination in regular graphs
PublikacjaA subset S of vertices of a graph G is a dominating set of G if every vertex not in S has a neighbor in S, while S is a total dominating set of G if every vertex has a neighbor in S. If S is a dominating set with the additional property that the subgraph induced by S contains a perfect matching, then S is a paired-dominating set. The domination number, denoted γ(G), is the minimum cardinality of a dominating set of G, while the...