Wyniki wyszukiwania dla: UCZENIE GŁĘBOKIE - MOST Wiedzy

Wyszukiwarka

Wyniki wyszukiwania dla: UCZENIE GŁĘBOKIE

Filtry

wszystkich: 16
wybranych: 4

wyczyść wszystkie filtry


Filtry wybranego katalogu

  • Kategoria

  • Rok

  • Opcje

wyczyść Filtry wybranego katalogu niedostępne

Wyniki wyszukiwania dla: UCZENIE GŁĘBOKIE

  • Głębokie uczenie do korekcji fazy sygnałów GMSK w rzeczywistym środowisku wewnątrzbudynkowym

    Niniejszy artykuł prezentuje zastosowanie modelu głębokiej sieci neuronowej do estymacji średniego odchylenia fazy sygnałów odebranych i jest elementem badań obejmujących szersze zagadnienie, jakim jest odbiór sygnałów GMSK wspomagany uczeniem maszynowym. Analiza pozwoliła potwierdzić wysoką skuteczność sieci neuronowej, a wyniki obejmowały kanały ETU i EPA oraz dane pomiarowe zebrane w rzeczywistym środowisku wewnątrz- budynkowym....

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Duże zbiory danych w zdalnej diagnostyce medycznej z wykorzystaniem technik głębokiego uczenia,

    Publikacja

    W ostatnim czasie obserwujemy tendencję globalnego starzenia się i znaczących zmian struktur demograficznych na całym świecie. Zgodnie z raportem przedstawionym przez Moody Investors Service, przewiduje się, iż do 2030 roku liczba znacząco-starzejących się krajów wzrośnie z 3 do 34. Światowy proces starzenia się społeczeństw doprowadził do wzrastających oczekiwań wobec starszych osób do pozostania niezależnymi. W związku z tym...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Architektury klasyfikatorów obrazów

    Publikacja

    - Rok 2022

    Klasyfikacja obrazów jest zagadnieniem z dziedziny widzenia komputerowego. Polega na całościowej analizie obrazu i przypisaniu go do jednej lub wielu kategorii (klas). Współczesne rozwiązania tego problemu są w znacznej części realizowane z wykorzystaniem konwolucyjnych głębokich sieci neuronowych (convolutional neural network, CNN). W tym rozdziale opisano przełomowe architektury CNN oraz ewolucję state-of-the-art w klasyfikacji...

    Pełny tekst do pobrania w serwisie zewnętrznym

  • Segmentacja obrazów medycznych przy ograniczonej liczbie adnotacji

    W dziedzinie badań klinicznych i opieki zdrowotnej tradycyjne podejście w uczeniu głębokim polegające na wykorzystaniu dużych zbiorów danych jest trudne w realizacji. Przyczyną takiego stanu rzeczy są koszty znakowania obrazów medycznych, zwłaszcza w przypadku segmentacji obrazów medycznych. Jest to żmudna operacja, która zazwyczaj wymaga intensywnego znakowania pikseli wykonanego przez ekspertów – lekarzy. W tym rozdziale zaprezentowano...

    Pełny tekst do pobrania w serwisie zewnętrznym